oheimb@11351: (* Title: HOL/Library/Continuity.thy oheimb@11351: ID: $$ oheimb@11351: Author: David von Oheimb, TU Muenchen oheimb@11351: License: GPL (GNU GENERAL PUBLIC LICENSE) oheimb@11351: oheimb@11351: *) oheimb@11351: oheimb@11351: header {* oheimb@11351: \title{Continuity and interations (of set transformers)} oheimb@11351: \author{David von Oheimb} oheimb@11351: *} oheimb@11351: oheimb@11351: theory Continuity = Relation_Power: oheimb@11351: oheimb@11351: oheimb@11351: subsection "Chains" oheimb@11351: oheimb@11351: constdefs oheimb@11351: up_chain :: "(nat => 'a set) => bool" oheimb@11351: "up_chain F == !i. F i <= F (Suc i)" oheimb@11351: oheimb@11351: lemma up_chainI: "(!!i. F i <= F (Suc i)) ==> up_chain F" oheimb@11351: by (simp add: up_chain_def); oheimb@11351: oheimb@11351: lemma up_chainD: "up_chain F ==> F i <= F (Suc i)" oheimb@11351: by (simp add: up_chain_def); oheimb@11351: oheimb@11351: lemma up_chain_less_mono [rule_format]: "up_chain F ==> x < y --> F x <= F y" oheimb@11351: apply (induct_tac y) oheimb@11351: apply (blast dest: up_chainD elim: less_SucE)+ oheimb@11351: done oheimb@11351: oheimb@11351: lemma up_chain_mono: "up_chain F ==> x <= y ==> F x <= F y" oheimb@11351: apply (drule le_imp_less_or_eq) oheimb@11351: apply (blast dest: up_chain_less_mono) oheimb@11351: done oheimb@11351: oheimb@11351: oheimb@11351: constdefs oheimb@11351: down_chain :: "(nat => 'a set) => bool" oheimb@11351: "down_chain F == !i. F (Suc i) <= F i" oheimb@11351: oheimb@11351: lemma down_chainI: "(!!i. F (Suc i) <= F i) ==> down_chain F" oheimb@11351: by (simp add: down_chain_def); oheimb@11351: oheimb@11351: lemma down_chainD: "down_chain F ==> F (Suc i) <= F i" oheimb@11351: by (simp add: down_chain_def); oheimb@11351: oheimb@11351: lemma down_chain_less_mono[rule_format]: "down_chain F ==> x < y --> F y <= F x" oheimb@11351: apply (induct_tac y) oheimb@11351: apply (blast dest: down_chainD elim: less_SucE)+ oheimb@11351: done oheimb@11351: oheimb@11351: lemma down_chain_mono: "down_chain F ==> x <= y ==> F y <= F x" oheimb@11351: apply (drule le_imp_less_or_eq) oheimb@11351: apply (blast dest: down_chain_less_mono) oheimb@11351: done oheimb@11351: oheimb@11351: oheimb@11351: subsection "Continuity" oheimb@11351: oheimb@11351: constdefs oheimb@11351: up_cont :: "('a set => 'a set) => bool" oheimb@11351: "up_cont f == !F. up_chain F --> f (Union (range F)) = Union (f`(range F))" oheimb@11351: oheimb@11351: lemma up_contI: oheimb@11351: "(!!F. up_chain F ==> f (Union (range F)) = Union (f`(range F))) ==> up_cont f" oheimb@11351: apply (unfold up_cont_def) oheimb@11351: by blast oheimb@11351: oheimb@11351: lemma up_contD: oheimb@11351: "[| up_cont f; up_chain F |] ==> f (Union (range F)) = Union (f`(range F))" oheimb@11351: apply (unfold up_cont_def) oheimb@11351: by auto oheimb@11351: oheimb@11351: oheimb@11351: lemma up_cont_mono: "up_cont f ==> mono f" oheimb@11351: apply (rule monoI) oheimb@11351: apply (drule_tac F = "%i. if i = 0 then A else B" in up_contD) oheimb@11351: apply (rule up_chainI) oheimb@11351: apply simp+ oheimb@11351: apply (drule Un_absorb1) oheimb@11351: apply auto oheimb@11351: done oheimb@11351: oheimb@11351: oheimb@11351: constdefs oheimb@11351: down_cont :: "('a set => 'a set) => bool" oheimb@11351: "down_cont f == !F. down_chain F --> f (Inter (range F)) = Inter (f`(range F))" oheimb@11351: oheimb@11351: lemma down_contI: oheimb@11351: "(!!F. down_chain F ==> f (Inter (range F)) = Inter (f`(range F))) ==> oheimb@11351: down_cont f" oheimb@11351: apply (unfold down_cont_def) oheimb@11351: by blast oheimb@11351: oheimb@11351: lemma down_contD: "[| down_cont f; down_chain F |] ==> oheimb@11351: f (Inter (range F)) = Inter (f`(range F))" oheimb@11351: apply (unfold down_cont_def) oheimb@11351: by auto oheimb@11351: oheimb@11351: lemma down_cont_mono: "down_cont f ==> mono f" oheimb@11351: apply (rule monoI) oheimb@11351: apply (drule_tac F = "%i. if i = 0 then B else A" in down_contD) oheimb@11351: apply (rule down_chainI) oheimb@11351: apply simp+ oheimb@11351: apply (drule Int_absorb1) oheimb@11351: apply auto oheimb@11351: done oheimb@11351: oheimb@11351: oheimb@11351: subsection "Iteration" oheimb@11351: oheimb@11351: constdefs oheimb@11351: oheimb@11351: up_iterate :: "('a set => 'a set) => nat => 'a set" oheimb@11351: "up_iterate f n == (f^n) {}" oheimb@11351: oheimb@11351: lemma up_iterate_0 [simp]: "up_iterate f 0 = {}" oheimb@11351: by (simp add: up_iterate_def) oheimb@11351: oheimb@11351: lemma up_iterate_Suc [simp]: oheimb@11351: "up_iterate f (Suc i) = f (up_iterate f i)" oheimb@11351: by (simp add: up_iterate_def) oheimb@11351: oheimb@11351: lemma up_iterate_chain: "mono F ==> up_chain (up_iterate F)" oheimb@11351: apply (rule up_chainI) oheimb@11351: apply (induct_tac i) oheimb@11351: apply simp+ oheimb@11351: apply (erule (1) monoD) oheimb@11351: done oheimb@11351: oheimb@11351: lemma UNION_up_iterate_is_fp: oheimb@11351: "up_cont F ==> F (UNION UNIV (up_iterate F)) = UNION UNIV (up_iterate F)" oheimb@11351: apply (frule up_cont_mono [THEN up_iterate_chain]) oheimb@11351: apply (drule (1) up_contD) oheimb@11351: apply simp oheimb@11351: apply (auto simp del: up_iterate_Suc simp add: up_iterate_Suc [symmetric]) oheimb@11351: apply (case_tac "xa") oheimb@11351: apply auto oheimb@11351: done oheimb@11351: oheimb@11351: lemma UNION_up_iterate_lowerbound: oheimb@11351: "[| mono F; F P = P |] ==> UNION UNIV (up_iterate F) <= P" oheimb@11351: apply (subgoal_tac "(!!i. up_iterate F i <= P)") oheimb@11351: apply fast oheimb@11351: apply (induct_tac "i") oheimb@11351: prefer 2 apply (drule (1) monoD) oheimb@11351: apply auto oheimb@11351: done oheimb@11351: oheimb@11351: lemma UNION_up_iterate_is_lfp: oheimb@11351: "up_cont F ==> lfp F = UNION UNIV (up_iterate F)" oheimb@11351: apply (rule set_eq_subset [THEN iffD2]) oheimb@11351: apply (rule conjI) oheimb@11351: prefer 2 oheimb@11351: apply (drule up_cont_mono) oheimb@11351: apply (rule UNION_up_iterate_lowerbound) oheimb@11351: apply assumption oheimb@11351: apply (erule lfp_unfold [symmetric]) oheimb@11351: apply (rule lfp_lowerbound) oheimb@11351: apply (rule set_eq_subset [THEN iffD1, THEN conjunct2]) oheimb@11351: apply (erule UNION_up_iterate_is_fp [symmetric]) oheimb@11351: done oheimb@11351: oheimb@11351: oheimb@11351: constdefs oheimb@11351: oheimb@11351: down_iterate :: "('a set => 'a set) => nat => 'a set" oheimb@11351: "down_iterate f n == (f^n) UNIV" oheimb@11351: oheimb@11351: lemma down_iterate_0 [simp]: "down_iterate f 0 = UNIV" oheimb@11351: by (simp add: down_iterate_def) oheimb@11351: oheimb@11351: lemma down_iterate_Suc [simp]: oheimb@11351: "down_iterate f (Suc i) = f (down_iterate f i)" oheimb@11351: by (simp add: down_iterate_def) oheimb@11351: oheimb@11351: lemma down_iterate_chain: "mono F ==> down_chain (down_iterate F)" oheimb@11351: apply (rule down_chainI) oheimb@11351: apply (induct_tac i) oheimb@11351: apply simp+ oheimb@11351: apply (erule (1) monoD) oheimb@11351: done oheimb@11351: oheimb@11351: lemma INTER_down_iterate_is_fp: oheimb@11351: "down_cont F ==> oheimb@11351: F (INTER UNIV (down_iterate F)) = INTER UNIV (down_iterate F)" oheimb@11351: apply (frule down_cont_mono [THEN down_iterate_chain]) oheimb@11351: apply (drule (1) down_contD) oheimb@11351: apply simp oheimb@11351: apply (auto simp del: down_iterate_Suc simp add: down_iterate_Suc [symmetric]) oheimb@11351: apply (case_tac "xa") oheimb@11351: apply auto oheimb@11351: done oheimb@11351: oheimb@11351: lemma INTER_down_iterate_upperbound: oheimb@11351: "[| mono F; F P = P |] ==> P <= INTER UNIV (down_iterate F)" oheimb@11351: apply (subgoal_tac "(!!i. P <= down_iterate F i)") oheimb@11351: apply fast oheimb@11351: apply (induct_tac "i") oheimb@11351: prefer 2 apply (drule (1) monoD) oheimb@11351: apply auto oheimb@11351: done oheimb@11351: oheimb@11351: lemma INTER_down_iterate_is_gfp: oheimb@11351: "down_cont F ==> gfp F = INTER UNIV (down_iterate F)" oheimb@11351: apply (rule set_eq_subset [THEN iffD2]) oheimb@11351: apply (rule conjI) oheimb@11351: apply (drule down_cont_mono) oheimb@11351: apply (rule INTER_down_iterate_upperbound) oheimb@11351: apply assumption oheimb@11351: apply (erule gfp_unfold [symmetric]) oheimb@11351: apply (rule gfp_upperbound) oheimb@11351: apply (rule set_eq_subset [THEN iffD1, THEN conjunct2]) oheimb@11351: apply (erule INTER_down_iterate_is_fp) oheimb@11351: done oheimb@11351: oheimb@11351: end