wenzelm@23164: (* Title: HOL/NatBin.thy wenzelm@23164: ID: $Id$ wenzelm@23164: Author: Lawrence C Paulson, Cambridge University Computer Laboratory wenzelm@23164: Copyright 1999 University of Cambridge wenzelm@23164: *) wenzelm@23164: wenzelm@23164: header {* Binary arithmetic for the natural numbers *} wenzelm@23164: wenzelm@23164: theory NatBin wenzelm@23164: imports IntDiv wenzelm@23164: begin wenzelm@23164: wenzelm@23164: text {* wenzelm@23164: Arithmetic for naturals is reduced to that for the non-negative integers. wenzelm@23164: *} wenzelm@23164: haftmann@25571: instantiation nat :: number haftmann@25571: begin haftmann@25571: haftmann@25571: definition haftmann@25571: nat_number_of_def [code inline]: "number_of v = nat (number_of (v\int))" haftmann@25571: haftmann@25571: instance .. haftmann@25571: haftmann@25571: end wenzelm@23164: wenzelm@23164: abbreviation (xsymbols) wenzelm@23164: square :: "'a::power => 'a" ("(_\)" [1000] 999) where wenzelm@23164: "x\ == x^2" wenzelm@23164: wenzelm@23164: notation (latex output) wenzelm@23164: square ("(_\)" [1000] 999) wenzelm@23164: wenzelm@23164: notation (HTML output) wenzelm@23164: square ("(_\)" [1000] 999) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*} wenzelm@23164: wenzelm@23164: declare nat_0 [simp] nat_1 [simp] wenzelm@23164: wenzelm@23164: lemma nat_number_of [simp]: "nat (number_of w) = number_of w" wenzelm@23164: by (simp add: nat_number_of_def) wenzelm@23164: wenzelm@23164: lemma nat_numeral_0_eq_0 [simp]: "Numeral0 = (0::nat)" wenzelm@23164: by (simp add: nat_number_of_def) wenzelm@23164: wenzelm@23164: lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)" wenzelm@23164: by (simp add: nat_1 nat_number_of_def) wenzelm@23164: wenzelm@23164: lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0" wenzelm@23164: by (simp add: nat_numeral_1_eq_1) wenzelm@23164: wenzelm@23164: lemma numeral_2_eq_2: "2 = Suc (Suc 0)" wenzelm@23164: apply (unfold nat_number_of_def) wenzelm@23164: apply (rule nat_2) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: text{*Distributive laws for type @{text nat}. The others are in theory wenzelm@23164: @{text IntArith}, but these require div and mod to be defined for type wenzelm@23164: "int". They also need some of the lemmas proved above.*} wenzelm@23164: wenzelm@23164: lemma nat_div_distrib: "(0::int) <= z ==> nat (z div z') = nat z div nat z'" wenzelm@23164: apply (case_tac "0 <= z'") wenzelm@23164: apply (auto simp add: div_nonneg_neg_le0 DIVISION_BY_ZERO_DIV) wenzelm@23164: apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO) huffman@23365: apply (auto elim!: nonneg_eq_int) wenzelm@23164: apply (rename_tac m m') huffman@23365: apply (subgoal_tac "0 <= int m div int m'") wenzelm@23164: prefer 2 apply (simp add: nat_numeral_0_eq_0 pos_imp_zdiv_nonneg_iff) huffman@23307: apply (rule of_nat_eq_iff [where 'a=int, THEN iffD1], simp) huffman@23365: apply (rule_tac r = "int (m mod m') " in quorem_div) wenzelm@23164: prefer 2 apply force huffman@23365: apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0 huffman@23307: of_nat_add [symmetric] of_nat_mult [symmetric] huffman@23307: del: of_nat_add of_nat_mult) wenzelm@23164: done wenzelm@23164: wenzelm@23164: (*Fails if z'<0: the LHS collapses to (nat z) but the RHS doesn't*) wenzelm@23164: lemma nat_mod_distrib: wenzelm@23164: "[| (0::int) <= z; 0 <= z' |] ==> nat (z mod z') = nat z mod nat z'" wenzelm@23164: apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO) huffman@23365: apply (auto elim!: nonneg_eq_int) wenzelm@23164: apply (rename_tac m m') huffman@23365: apply (subgoal_tac "0 <= int m mod int m'") huffman@23365: prefer 2 apply (simp add: nat_less_iff nat_numeral_0_eq_0 pos_mod_sign) huffman@23365: apply (rule int_int_eq [THEN iffD1], simp) huffman@23365: apply (rule_tac q = "int (m div m') " in quorem_mod) wenzelm@23164: prefer 2 apply force huffman@23365: apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0 huffman@23307: of_nat_add [symmetric] of_nat_mult [symmetric] huffman@23307: del: of_nat_add of_nat_mult) wenzelm@23164: done wenzelm@23164: wenzelm@23164: text{*Suggested by Matthias Daum*} wenzelm@23164: lemma int_div_less_self: "\0 < x; 1 < k\ \ x div k < (x::int)" wenzelm@23164: apply (subgoal_tac "nat x div nat k < nat x") wenzelm@23164: apply (simp (asm_lr) add: nat_div_distrib [symmetric]) wenzelm@23164: apply (rule Divides.div_less_dividend, simp_all) wenzelm@23164: done wenzelm@23164: wenzelm@23164: subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*} wenzelm@23164: wenzelm@23164: (*"neg" is used in rewrite rules for binary comparisons*) wenzelm@23164: lemma int_nat_number_of [simp]: huffman@23365: "int (number_of v) = huffman@23307: (if neg (number_of v :: int) then 0 huffman@23307: else (number_of v :: int))" huffman@23307: by (simp del: nat_number_of huffman@23307: add: neg_nat nat_number_of_def not_neg_nat add_assoc) huffman@23307: wenzelm@23164: wenzelm@23164: subsubsection{*Successor *} wenzelm@23164: wenzelm@23164: lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" wenzelm@23164: apply (rule sym) wenzelm@23164: apply (simp add: nat_eq_iff int_Suc) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma Suc_nat_number_of_add: wenzelm@23164: "Suc (number_of v + n) = wenzelm@23164: (if neg (number_of v :: int) then 1+n else number_of (Numeral.succ v) + n)" wenzelm@23164: by (simp del: nat_number_of wenzelm@23164: add: nat_number_of_def neg_nat wenzelm@23164: Suc_nat_eq_nat_zadd1 number_of_succ) wenzelm@23164: wenzelm@23164: lemma Suc_nat_number_of [simp]: wenzelm@23164: "Suc (number_of v) = wenzelm@23164: (if neg (number_of v :: int) then 1 else number_of (Numeral.succ v))" wenzelm@23164: apply (cut_tac n = 0 in Suc_nat_number_of_add) wenzelm@23164: apply (simp cong del: if_weak_cong) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*Addition *} wenzelm@23164: wenzelm@23164: (*"neg" is used in rewrite rules for binary comparisons*) wenzelm@23164: lemma add_nat_number_of [simp]: wenzelm@23164: "(number_of v :: nat) + number_of v' = wenzelm@23164: (if neg (number_of v :: int) then number_of v' wenzelm@23164: else if neg (number_of v' :: int) then number_of v wenzelm@23164: else number_of (v + v'))" wenzelm@23164: by (force dest!: neg_nat wenzelm@23164: simp del: nat_number_of wenzelm@23164: simp add: nat_number_of_def nat_add_distrib [symmetric]) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*Subtraction *} wenzelm@23164: wenzelm@23164: lemma diff_nat_eq_if: wenzelm@23164: "nat z - nat z' = wenzelm@23164: (if neg z' then nat z wenzelm@23164: else let d = z-z' in wenzelm@23164: if neg d then 0 else nat d)" wenzelm@23164: apply (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma diff_nat_number_of [simp]: wenzelm@23164: "(number_of v :: nat) - number_of v' = wenzelm@23164: (if neg (number_of v' :: int) then number_of v wenzelm@23164: else let d = number_of (v + uminus v') in wenzelm@23164: if neg d then 0 else nat d)" wenzelm@23164: by (simp del: nat_number_of add: diff_nat_eq_if nat_number_of_def) wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*Multiplication *} wenzelm@23164: wenzelm@23164: lemma mult_nat_number_of [simp]: wenzelm@23164: "(number_of v :: nat) * number_of v' = wenzelm@23164: (if neg (number_of v :: int) then 0 else number_of (v * v'))" wenzelm@23164: by (force dest!: neg_nat wenzelm@23164: simp del: nat_number_of wenzelm@23164: simp add: nat_number_of_def nat_mult_distrib [symmetric]) wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*Quotient *} wenzelm@23164: wenzelm@23164: lemma div_nat_number_of [simp]: wenzelm@23164: "(number_of v :: nat) div number_of v' = wenzelm@23164: (if neg (number_of v :: int) then 0 wenzelm@23164: else nat (number_of v div number_of v'))" wenzelm@23164: by (force dest!: neg_nat wenzelm@23164: simp del: nat_number_of wenzelm@23164: simp add: nat_number_of_def nat_div_distrib [symmetric]) wenzelm@23164: wenzelm@23164: lemma one_div_nat_number_of [simp]: wenzelm@23164: "(Suc 0) div number_of v' = (nat (1 div number_of v'))" wenzelm@23164: by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*Remainder *} wenzelm@23164: wenzelm@23164: lemma mod_nat_number_of [simp]: wenzelm@23164: "(number_of v :: nat) mod number_of v' = wenzelm@23164: (if neg (number_of v :: int) then 0 wenzelm@23164: else if neg (number_of v' :: int) then number_of v wenzelm@23164: else nat (number_of v mod number_of v'))" wenzelm@23164: by (force dest!: neg_nat wenzelm@23164: simp del: nat_number_of wenzelm@23164: simp add: nat_number_of_def nat_mod_distrib [symmetric]) wenzelm@23164: wenzelm@23164: lemma one_mod_nat_number_of [simp]: wenzelm@23164: "(Suc 0) mod number_of v' = wenzelm@23164: (if neg (number_of v' :: int) then Suc 0 wenzelm@23164: else nat (1 mod number_of v'))" wenzelm@23164: by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{* Divisibility *} wenzelm@23164: wenzelm@23164: lemmas dvd_eq_mod_eq_0_number_of = wenzelm@23164: dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard] wenzelm@23164: wenzelm@23164: declare dvd_eq_mod_eq_0_number_of [simp] wenzelm@23164: wenzelm@23164: ML wenzelm@23164: {* wenzelm@23164: val nat_number_of_def = thm"nat_number_of_def"; wenzelm@23164: wenzelm@23164: val nat_number_of = thm"nat_number_of"; wenzelm@23164: val nat_numeral_0_eq_0 = thm"nat_numeral_0_eq_0"; wenzelm@23164: val nat_numeral_1_eq_1 = thm"nat_numeral_1_eq_1"; wenzelm@23164: val numeral_1_eq_Suc_0 = thm"numeral_1_eq_Suc_0"; wenzelm@23164: val numeral_2_eq_2 = thm"numeral_2_eq_2"; wenzelm@23164: val nat_div_distrib = thm"nat_div_distrib"; wenzelm@23164: val nat_mod_distrib = thm"nat_mod_distrib"; wenzelm@23164: val int_nat_number_of = thm"int_nat_number_of"; wenzelm@23164: val Suc_nat_eq_nat_zadd1 = thm"Suc_nat_eq_nat_zadd1"; wenzelm@23164: val Suc_nat_number_of_add = thm"Suc_nat_number_of_add"; wenzelm@23164: val Suc_nat_number_of = thm"Suc_nat_number_of"; wenzelm@23164: val add_nat_number_of = thm"add_nat_number_of"; wenzelm@23164: val diff_nat_eq_if = thm"diff_nat_eq_if"; wenzelm@23164: val diff_nat_number_of = thm"diff_nat_number_of"; wenzelm@23164: val mult_nat_number_of = thm"mult_nat_number_of"; wenzelm@23164: val div_nat_number_of = thm"div_nat_number_of"; wenzelm@23164: val mod_nat_number_of = thm"mod_nat_number_of"; wenzelm@23164: *} wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Comparisons*} wenzelm@23164: wenzelm@23164: subsubsection{*Equals (=) *} wenzelm@23164: wenzelm@23164: lemma eq_nat_nat_iff: wenzelm@23164: "[| (0::int) <= z; 0 <= z' |] ==> (nat z = nat z') = (z=z')" wenzelm@23164: by (auto elim!: nonneg_eq_int) wenzelm@23164: wenzelm@23164: (*"neg" is used in rewrite rules for binary comparisons*) wenzelm@23164: lemma eq_nat_number_of [simp]: wenzelm@23164: "((number_of v :: nat) = number_of v') = wenzelm@23164: (if neg (number_of v :: int) then (iszero (number_of v' :: int) | neg (number_of v' :: int)) wenzelm@23164: else if neg (number_of v' :: int) then iszero (number_of v :: int) wenzelm@23164: else iszero (number_of (v + uminus v') :: int))" wenzelm@23164: apply (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def wenzelm@23164: eq_nat_nat_iff eq_number_of_eq nat_0 iszero_def wenzelm@23164: split add: split_if cong add: imp_cong) wenzelm@23164: apply (simp only: nat_eq_iff nat_eq_iff2) wenzelm@23164: apply (simp add: not_neg_eq_ge_0 [symmetric]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*Less-than (<) *} wenzelm@23164: wenzelm@23164: (*"neg" is used in rewrite rules for binary comparisons*) wenzelm@23164: lemma less_nat_number_of [simp]: wenzelm@23164: "((number_of v :: nat) < number_of v') = wenzelm@23164: (if neg (number_of v :: int) then neg (number_of (uminus v') :: int) wenzelm@23164: else neg (number_of (v + uminus v') :: int))" wenzelm@23164: by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def wenzelm@23164: nat_less_eq_zless less_number_of_eq_neg zless_nat_eq_int_zless wenzelm@23164: cong add: imp_cong, simp add: Pls_def) wenzelm@23164: wenzelm@23164: wenzelm@23164: (*Maps #n to n for n = 0, 1, 2*) wenzelm@23164: lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2 wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Powers with Numeric Exponents*} wenzelm@23164: wenzelm@23164: text{*We cannot refer to the number @{term 2} in @{text Ring_and_Field.thy}. wenzelm@23164: We cannot prove general results about the numeral @{term "-1"}, so we have to wenzelm@23164: use @{term "- 1"} instead.*} wenzelm@23164: huffman@23277: lemma power2_eq_square: "(a::'a::recpower)\ = a * a" wenzelm@23164: by (simp add: numeral_2_eq_2 Power.power_Suc) wenzelm@23164: huffman@23277: lemma zero_power2 [simp]: "(0::'a::{semiring_1,recpower})\ = 0" wenzelm@23164: by (simp add: power2_eq_square) wenzelm@23164: huffman@23277: lemma one_power2 [simp]: "(1::'a::{semiring_1,recpower})\ = 1" wenzelm@23164: by (simp add: power2_eq_square) wenzelm@23164: wenzelm@23164: lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x" wenzelm@23164: apply (subgoal_tac "3 = Suc (Suc (Suc 0))") wenzelm@23164: apply (erule ssubst) wenzelm@23164: apply (simp add: power_Suc mult_ac) wenzelm@23164: apply (unfold nat_number_of_def) wenzelm@23164: apply (subst nat_eq_iff) wenzelm@23164: apply simp wenzelm@23164: done wenzelm@23164: wenzelm@23164: text{*Squares of literal numerals will be evaluated.*} wenzelm@23164: lemmas power2_eq_square_number_of = wenzelm@23164: power2_eq_square [of "number_of w", standard] wenzelm@23164: declare power2_eq_square_number_of [simp] wenzelm@23164: wenzelm@23164: wenzelm@23164: lemma zero_le_power2[simp]: "0 \ (a\::'a::{ordered_idom,recpower})" wenzelm@23164: by (simp add: power2_eq_square) wenzelm@23164: wenzelm@23164: lemma zero_less_power2[simp]: wenzelm@23164: "(0 < a\) = (a \ (0::'a::{ordered_idom,recpower}))" wenzelm@23164: by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) wenzelm@23164: wenzelm@23164: lemma power2_less_0[simp]: wenzelm@23164: fixes a :: "'a::{ordered_idom,recpower}" wenzelm@23164: shows "~ (a\ < 0)" wenzelm@23164: by (force simp add: power2_eq_square mult_less_0_iff) wenzelm@23164: wenzelm@23164: lemma zero_eq_power2[simp]: wenzelm@23164: "(a\ = 0) = (a = (0::'a::{ordered_idom,recpower}))" wenzelm@23164: by (force simp add: power2_eq_square mult_eq_0_iff) wenzelm@23164: wenzelm@23164: lemma abs_power2[simp]: wenzelm@23164: "abs(a\) = (a\::'a::{ordered_idom,recpower})" wenzelm@23164: by (simp add: power2_eq_square abs_mult abs_mult_self) wenzelm@23164: wenzelm@23164: lemma power2_abs[simp]: wenzelm@23164: "(abs a)\ = (a\::'a::{ordered_idom,recpower})" wenzelm@23164: by (simp add: power2_eq_square abs_mult_self) wenzelm@23164: wenzelm@23164: lemma power2_minus[simp]: wenzelm@23164: "(- a)\ = (a\::'a::{comm_ring_1,recpower})" wenzelm@23164: by (simp add: power2_eq_square) wenzelm@23164: wenzelm@23164: lemma power2_le_imp_le: wenzelm@23164: fixes x y :: "'a::{ordered_semidom,recpower}" wenzelm@23164: shows "\x\ \ y\; 0 \ y\ \ x \ y" wenzelm@23164: unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) wenzelm@23164: wenzelm@23164: lemma power2_less_imp_less: wenzelm@23164: fixes x y :: "'a::{ordered_semidom,recpower}" wenzelm@23164: shows "\x\ < y\; 0 \ y\ \ x < y" wenzelm@23164: by (rule power_less_imp_less_base) wenzelm@23164: wenzelm@23164: lemma power2_eq_imp_eq: wenzelm@23164: fixes x y :: "'a::{ordered_semidom,recpower}" wenzelm@23164: shows "\x\ = y\; 0 \ x; 0 \ y\ \ x = y" wenzelm@23164: unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base, simp) wenzelm@23164: wenzelm@23164: lemma power_minus1_even[simp]: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})" wenzelm@23164: apply (induct "n") wenzelm@23164: apply (auto simp add: power_Suc power_add) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma power_even_eq: "(a::'a::recpower) ^ (2*n) = (a^n)^2" wenzelm@23164: by (subst mult_commute) (simp add: power_mult) wenzelm@23164: wenzelm@23164: lemma power_odd_eq: "(a::int) ^ Suc(2*n) = a * (a^n)^2" wenzelm@23164: by (simp add: power_even_eq) wenzelm@23164: wenzelm@23164: lemma power_minus_even [simp]: wenzelm@23164: "(-a) ^ (2*n) = (a::'a::{comm_ring_1,recpower}) ^ (2*n)" wenzelm@23164: by (simp add: power_minus1_even power_minus [of a]) wenzelm@23164: wenzelm@23164: lemma zero_le_even_power'[simp]: wenzelm@23164: "0 \ (a::'a::{ordered_idom,recpower}) ^ (2*n)" wenzelm@23164: proof (induct "n") wenzelm@23164: case 0 wenzelm@23164: show ?case by (simp add: zero_le_one) wenzelm@23164: next wenzelm@23164: case (Suc n) wenzelm@23164: have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" wenzelm@23164: by (simp add: mult_ac power_add power2_eq_square) wenzelm@23164: thus ?case wenzelm@23164: by (simp add: prems zero_le_mult_iff) wenzelm@23164: qed wenzelm@23164: wenzelm@23164: lemma odd_power_less_zero: wenzelm@23164: "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0" wenzelm@23164: proof (induct "n") wenzelm@23164: case 0 wenzelm@23389: then show ?case by (simp add: Power.power_Suc) wenzelm@23164: next wenzelm@23164: case (Suc n) wenzelm@23389: have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" wenzelm@23389: by (simp add: mult_ac power_add power2_eq_square Power.power_Suc) wenzelm@23389: thus ?case wenzelm@23389: by (simp add: prems mult_less_0_iff mult_neg_neg) wenzelm@23164: qed wenzelm@23164: wenzelm@23164: lemma odd_0_le_power_imp_0_le: wenzelm@23164: "0 \ a ^ Suc(2*n) ==> 0 \ (a::'a::{ordered_idom,recpower})" wenzelm@23164: apply (insert odd_power_less_zero [of a n]) wenzelm@23164: apply (force simp add: linorder_not_less [symmetric]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: text{*Simprules for comparisons where common factors can be cancelled.*} wenzelm@23164: lemmas zero_compare_simps = wenzelm@23164: add_strict_increasing add_strict_increasing2 add_increasing wenzelm@23164: zero_le_mult_iff zero_le_divide_iff wenzelm@23164: zero_less_mult_iff zero_less_divide_iff wenzelm@23164: mult_le_0_iff divide_le_0_iff wenzelm@23164: mult_less_0_iff divide_less_0_iff wenzelm@23164: zero_le_power2 power2_less_0 wenzelm@23164: wenzelm@23164: subsubsection{*Nat *} wenzelm@23164: wenzelm@23164: lemma Suc_pred': "0 < n ==> n = Suc(n - 1)" wenzelm@23164: by (simp add: numerals) wenzelm@23164: wenzelm@23164: (*Expresses a natural number constant as the Suc of another one. wenzelm@23164: NOT suitable for rewriting because n recurs in the condition.*) wenzelm@23164: lemmas expand_Suc = Suc_pred' [of "number_of v", standard] wenzelm@23164: wenzelm@23164: subsubsection{*Arith *} wenzelm@23164: wenzelm@23164: lemma Suc_eq_add_numeral_1: "Suc n = n + 1" wenzelm@23164: by (simp add: numerals) wenzelm@23164: wenzelm@23164: lemma Suc_eq_add_numeral_1_left: "Suc n = 1 + n" wenzelm@23164: by (simp add: numerals) wenzelm@23164: wenzelm@23164: (* These two can be useful when m = number_of... *) wenzelm@23164: wenzelm@23164: lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))" wenzelm@23164: apply (case_tac "m") wenzelm@23164: apply (simp_all add: numerals) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))" wenzelm@23164: apply (case_tac "m") wenzelm@23164: apply (simp_all add: numerals) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))" wenzelm@23164: apply (case_tac "m") wenzelm@23164: apply (simp_all add: numerals) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Comparisons involving (0::nat) *} wenzelm@23164: wenzelm@23164: text{*Simplification already does @{term "n<0"}, @{term "n\0"} and @{term "0\n"}.*} wenzelm@23164: wenzelm@23164: lemma eq_number_of_0 [simp]: wenzelm@23164: "(number_of v = (0::nat)) = wenzelm@23164: (if neg (number_of v :: int) then True else iszero (number_of v :: int))" wenzelm@23164: by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0) wenzelm@23164: wenzelm@23164: lemma eq_0_number_of [simp]: wenzelm@23164: "((0::nat) = number_of v) = wenzelm@23164: (if neg (number_of v :: int) then True else iszero (number_of v :: int))" wenzelm@23164: by (rule trans [OF eq_sym_conv eq_number_of_0]) wenzelm@23164: wenzelm@23164: lemma less_0_number_of [simp]: wenzelm@23164: "((0::nat) < number_of v) = neg (number_of (uminus v) :: int)" wenzelm@23164: by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] Pls_def) wenzelm@23164: wenzelm@23164: wenzelm@23164: lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)" wenzelm@23164: by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0) wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Comparisons involving @{term Suc} *} wenzelm@23164: wenzelm@23164: lemma eq_number_of_Suc [simp]: wenzelm@23164: "(number_of v = Suc n) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then False else nat pv = n)" wenzelm@23164: apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less wenzelm@23164: number_of_pred nat_number_of_def wenzelm@23164: split add: split_if) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply (auto simp add: nat_eq_iff) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma Suc_eq_number_of [simp]: wenzelm@23164: "(Suc n = number_of v) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then False else nat pv = n)" wenzelm@23164: by (rule trans [OF eq_sym_conv eq_number_of_Suc]) wenzelm@23164: wenzelm@23164: lemma less_number_of_Suc [simp]: wenzelm@23164: "(number_of v < Suc n) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then True else nat pv < n)" wenzelm@23164: apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less wenzelm@23164: number_of_pred nat_number_of_def wenzelm@23164: split add: split_if) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply (auto simp add: nat_less_iff) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma less_Suc_number_of [simp]: wenzelm@23164: "(Suc n < number_of v) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then False else n < nat pv)" wenzelm@23164: apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less wenzelm@23164: number_of_pred nat_number_of_def wenzelm@23164: split add: split_if) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply (auto simp add: zless_nat_eq_int_zless) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma le_number_of_Suc [simp]: wenzelm@23164: "(number_of v <= Suc n) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then True else nat pv <= n)" wenzelm@23164: by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric]) wenzelm@23164: wenzelm@23164: lemma le_Suc_number_of [simp]: wenzelm@23164: "(Suc n <= number_of v) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then False else n <= nat pv)" wenzelm@23164: by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric]) wenzelm@23164: wenzelm@23164: wenzelm@23164: lemma lemma1: "(m+m = n+n) = (m = (n::int))" wenzelm@23164: by auto wenzelm@23164: wenzelm@23164: lemma lemma2: "m+m ~= (1::int) + (n + n)" wenzelm@23164: apply auto wenzelm@23164: apply (drule_tac f = "%x. x mod 2" in arg_cong) wenzelm@23164: apply (simp add: zmod_zadd1_eq) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma eq_number_of_BIT_BIT: wenzelm@23164: "((number_of (v BIT x) ::int) = number_of (w BIT y)) = wenzelm@23164: (x=y & (((number_of v) ::int) = number_of w))" wenzelm@23164: apply (simp only: number_of_BIT lemma1 lemma2 eq_commute wenzelm@23164: OrderedGroup.add_left_cancel add_assoc OrderedGroup.add_0_left wenzelm@23164: split add: bit.split) wenzelm@23164: apply simp wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma eq_number_of_BIT_Pls: wenzelm@23164: "((number_of (v BIT x) ::int) = Numeral0) = wenzelm@23164: (x=bit.B0 & (((number_of v) ::int) = Numeral0))" wenzelm@23164: apply (simp only: simp_thms add: number_of_BIT number_of_Pls eq_commute wenzelm@23164: split add: bit.split cong: imp_cong) wenzelm@23164: apply (rule_tac x = "number_of v" in spec, safe) wenzelm@23164: apply (simp_all (no_asm_use)) wenzelm@23164: apply (drule_tac f = "%x. x mod 2" in arg_cong) wenzelm@23164: apply (simp add: zmod_zadd1_eq) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma eq_number_of_BIT_Min: wenzelm@23164: "((number_of (v BIT x) ::int) = number_of Numeral.Min) = wenzelm@23164: (x=bit.B1 & (((number_of v) ::int) = number_of Numeral.Min))" wenzelm@23164: apply (simp only: simp_thms add: number_of_BIT number_of_Min eq_commute wenzelm@23164: split add: bit.split cong: imp_cong) wenzelm@23164: apply (rule_tac x = "number_of v" in spec, auto) wenzelm@23164: apply (drule_tac f = "%x. x mod 2" in arg_cong, auto) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Numeral.Min" wenzelm@23164: by auto wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Max and Min Combined with @{term Suc} *} wenzelm@23164: wenzelm@23164: lemma max_number_of_Suc [simp]: wenzelm@23164: "max (Suc n) (number_of v) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then Suc n else Suc(max n (nat pv)))" wenzelm@23164: apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def wenzelm@23164: split add: split_if nat.split) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply auto wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma max_Suc_number_of [simp]: wenzelm@23164: "max (number_of v) (Suc n) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then Suc n else Suc(max (nat pv) n))" wenzelm@23164: apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def wenzelm@23164: split add: split_if nat.split) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply auto wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma min_number_of_Suc [simp]: wenzelm@23164: "min (Suc n) (number_of v) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then 0 else Suc(min n (nat pv)))" wenzelm@23164: apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def wenzelm@23164: split add: split_if nat.split) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply auto wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma min_Suc_number_of [simp]: wenzelm@23164: "min (number_of v) (Suc n) = wenzelm@23164: (let pv = number_of (Numeral.pred v) in wenzelm@23164: if neg pv then 0 else Suc(min (nat pv) n))" wenzelm@23164: apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def wenzelm@23164: split add: split_if nat.split) wenzelm@23164: apply (rule_tac x = "number_of v" in spec) wenzelm@23164: apply auto wenzelm@23164: done wenzelm@23164: wenzelm@23164: subsection{*Literal arithmetic involving powers*} wenzelm@23164: wenzelm@23164: lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n" wenzelm@23164: apply (induct "n") wenzelm@23164: apply (simp_all (no_asm_simp) add: nat_mult_distrib) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma power_nat_number_of: wenzelm@23164: "(number_of v :: nat) ^ n = wenzelm@23164: (if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))" wenzelm@23164: by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq wenzelm@23164: split add: split_if cong: imp_cong) wenzelm@23164: wenzelm@23164: wenzelm@23164: lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard] wenzelm@23164: declare power_nat_number_of_number_of [simp] wenzelm@23164: wenzelm@23164: wenzelm@23164: huffman@23294: text{*For arbitrary rings*} wenzelm@23164: huffman@23294: lemma power_number_of_even: huffman@23294: fixes z :: "'a::{number_ring,recpower}" huffman@23294: shows "z ^ number_of (w BIT bit.B0) = (let w = z ^ (number_of w) in w * w)" wenzelm@23164: unfolding Let_def nat_number_of_def number_of_BIT bit.cases wenzelm@23164: apply (rule_tac x = "number_of w" in spec, clarify) wenzelm@23164: apply (case_tac " (0::int) <= x") wenzelm@23164: apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square) wenzelm@23164: done wenzelm@23164: huffman@23294: lemma power_number_of_odd: huffman@23294: fixes z :: "'a::{number_ring,recpower}" huffman@23294: shows "z ^ number_of (w BIT bit.B1) = (if (0::int) <= number_of w wenzelm@23164: then (let w = z ^ (number_of w) in z * w * w) else 1)" wenzelm@23164: unfolding Let_def nat_number_of_def number_of_BIT bit.cases wenzelm@23164: apply (rule_tac x = "number_of w" in spec, auto) wenzelm@23164: apply (simp only: nat_add_distrib nat_mult_distrib) wenzelm@23164: apply simp huffman@23294: apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc) wenzelm@23164: done wenzelm@23164: huffman@23294: lemmas zpower_number_of_even = power_number_of_even [where 'a=int] huffman@23294: lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int] wenzelm@23164: huffman@23294: lemmas power_number_of_even_number_of [simp] = huffman@23294: power_number_of_even [of "number_of v", standard] wenzelm@23164: huffman@23294: lemmas power_number_of_odd_number_of [simp] = huffman@23294: power_number_of_odd [of "number_of v", standard] wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: ML wenzelm@23164: {* haftmann@25481: val numeral_ss = simpset() addsimps @{thms numerals}; wenzelm@23164: wenzelm@23164: val nat_bin_arith_setup = wenzelm@24093: LinArith.map_data wenzelm@23164: (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} => wenzelm@23164: {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms, wenzelm@23164: inj_thms = inj_thms, wenzelm@23164: lessD = lessD, neqE = neqE, wenzelm@23164: simpset = simpset addsimps [Suc_nat_number_of, int_nat_number_of, haftmann@25481: @{thm not_neg_number_of_Pls}, @{thm neg_number_of_Min}, haftmann@25481: @{thm neg_number_of_BIT}]}) wenzelm@23164: *} wenzelm@23164: wenzelm@24075: declaration {* K nat_bin_arith_setup *} wenzelm@23164: wenzelm@23164: (* Enable arith to deal with div/mod k where k is a numeral: *) wenzelm@23164: declare split_div[of _ _ "number_of k", standard, arith_split] wenzelm@23164: declare split_mod[of _ _ "number_of k", standard, arith_split] wenzelm@23164: wenzelm@23164: lemma nat_number_of_Pls: "Numeral0 = (0::nat)" wenzelm@23164: by (simp add: number_of_Pls nat_number_of_def) wenzelm@23164: wenzelm@23164: lemma nat_number_of_Min: "number_of Numeral.Min = (0::nat)" wenzelm@23164: apply (simp only: number_of_Min nat_number_of_def nat_zminus_int) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma nat_number_of_BIT_1: wenzelm@23164: "number_of (w BIT bit.B1) = wenzelm@23164: (if neg (number_of w :: int) then 0 wenzelm@23164: else let n = number_of w in Suc (n + n))" wenzelm@23164: apply (simp only: nat_number_of_def Let_def split: split_if) wenzelm@23164: apply (intro conjI impI) wenzelm@23164: apply (simp add: neg_nat neg_number_of_BIT) wenzelm@23164: apply (rule int_int_eq [THEN iffD1]) wenzelm@23164: apply (simp only: not_neg_nat neg_number_of_BIT int_Suc zadd_int [symmetric] simp_thms) wenzelm@23164: apply (simp only: number_of_BIT zadd_assoc split: bit.split) wenzelm@23164: apply simp wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma nat_number_of_BIT_0: wenzelm@23164: "number_of (w BIT bit.B0) = (let n::nat = number_of w in n + n)" wenzelm@23164: apply (simp only: nat_number_of_def Let_def) wenzelm@23164: apply (cases "neg (number_of w :: int)") wenzelm@23164: apply (simp add: neg_nat neg_number_of_BIT) wenzelm@23164: apply (rule int_int_eq [THEN iffD1]) wenzelm@23164: apply (simp only: not_neg_nat neg_number_of_BIT int_Suc zadd_int [symmetric] simp_thms) wenzelm@23164: apply (simp only: number_of_BIT zadd_assoc) wenzelm@23164: apply simp wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemmas nat_number = wenzelm@23164: nat_number_of_Pls nat_number_of_Min wenzelm@23164: nat_number_of_BIT_1 nat_number_of_BIT_0 wenzelm@23164: wenzelm@23164: lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)" wenzelm@23164: by (simp add: Let_def) wenzelm@23164: wenzelm@23164: lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring,recpower})" huffman@23294: by (simp add: power_mult power_Suc); wenzelm@23164: wenzelm@23164: lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring,recpower})" wenzelm@23164: by (simp add: power_mult power_Suc); wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Literal arithmetic and @{term of_nat}*} wenzelm@23164: wenzelm@23164: lemma of_nat_double: wenzelm@23164: "0 \ x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)" wenzelm@23164: by (simp only: mult_2 nat_add_distrib of_nat_add) wenzelm@23164: wenzelm@23164: lemma nat_numeral_m1_eq_0: "-1 = (0::nat)" wenzelm@23164: by (simp only: nat_number_of_def) wenzelm@23164: wenzelm@23164: lemma of_nat_number_of_lemma: wenzelm@23164: "of_nat (number_of v :: nat) = wenzelm@23164: (if 0 \ (number_of v :: int) wenzelm@23164: then (number_of v :: 'a :: number_ring) wenzelm@23164: else 0)" wenzelm@23164: by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat); wenzelm@23164: wenzelm@23164: lemma of_nat_number_of_eq [simp]: wenzelm@23164: "of_nat (number_of v :: nat) = wenzelm@23164: (if neg (number_of v :: int) then 0 wenzelm@23164: else (number_of v :: 'a :: number_ring))" wenzelm@23164: by (simp only: of_nat_number_of_lemma neg_def, simp) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection {*Lemmas for the Combination and Cancellation Simprocs*} wenzelm@23164: wenzelm@23164: lemma nat_number_of_add_left: wenzelm@23164: "number_of v + (number_of v' + (k::nat)) = wenzelm@23164: (if neg (number_of v :: int) then number_of v' + k wenzelm@23164: else if neg (number_of v' :: int) then number_of v + k wenzelm@23164: else number_of (v + v') + k)" wenzelm@23164: by simp wenzelm@23164: wenzelm@23164: lemma nat_number_of_mult_left: wenzelm@23164: "number_of v * (number_of v' * (k::nat)) = wenzelm@23164: (if neg (number_of v :: int) then 0 wenzelm@23164: else number_of (v * v') * k)" wenzelm@23164: by simp wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*For @{text combine_numerals}*} wenzelm@23164: wenzelm@23164: lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)" wenzelm@23164: by (simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*For @{text cancel_numerals}*} wenzelm@23164: wenzelm@23164: lemma nat_diff_add_eq1: wenzelm@23164: "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)" wenzelm@23164: by (simp split add: nat_diff_split add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_diff_add_eq2: wenzelm@23164: "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))" wenzelm@23164: by (simp split add: nat_diff_split add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_eq_add_iff1: wenzelm@23164: "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)" wenzelm@23164: by (auto split add: nat_diff_split simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_eq_add_iff2: wenzelm@23164: "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)" wenzelm@23164: by (auto split add: nat_diff_split simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_less_add_iff1: wenzelm@23164: "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)" wenzelm@23164: by (auto split add: nat_diff_split simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_less_add_iff2: wenzelm@23164: "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)" wenzelm@23164: by (auto split add: nat_diff_split simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_le_add_iff1: wenzelm@23164: "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)" wenzelm@23164: by (auto split add: nat_diff_split simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: lemma nat_le_add_iff2: wenzelm@23164: "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)" wenzelm@23164: by (auto split add: nat_diff_split simp add: add_mult_distrib) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsubsection{*For @{text cancel_numeral_factors} *} wenzelm@23164: wenzelm@23164: lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)" wenzelm@23164: by auto wenzelm@23164: wenzelm@23164: lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m (k*m = k*n) = (m=n)" wenzelm@23164: by auto wenzelm@23164: wenzelm@23164: lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)" wenzelm@23164: by auto wenzelm@23164: nipkow@23969: lemma nat_mult_dvd_cancel_disj[simp]: nipkow@23969: "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))" nipkow@23969: by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric]) nipkow@23969: nipkow@23969: lemma nat_mult_dvd_cancel1: "0 < k \ (k*m) dvd (k*n::nat) = (m dvd n)" nipkow@23969: by(auto) nipkow@23969: wenzelm@23164: wenzelm@23164: subsubsection{*For @{text cancel_factor} *} wenzelm@23164: wenzelm@23164: lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)" wenzelm@23164: by auto wenzelm@23164: wenzelm@23164: lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m