berghofe@5181: (* Title: HOL/Datatype.thy wenzelm@20819: Author: Lawrence C Paulson, Cambridge University Computer Laboratory wenzelm@11954: Author: Stefan Berghofer and Markus Wenzel, TU Muenchen wenzelm@20819: wenzelm@20819: Could <*> be generalized to a general summation (Sigma)? berghofe@5181: *) berghofe@5181: wenzelm@21669: header {* Analogues of the Cartesian Product and Disjoint Sum for Datatypes *} wenzelm@11954: nipkow@15131: theory Datatype haftmann@29609: imports Nat Product_Type nipkow@15131: begin wenzelm@11954: wenzelm@20819: typedef (Node) wenzelm@20819: ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}" wenzelm@20819: --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*} wenzelm@20819: by auto wenzelm@20819: wenzelm@20819: text{*Datatypes will be represented by sets of type @{text node}*} wenzelm@20819: wenzelm@20819: types 'a item = "('a, unit) node set" wenzelm@20819: ('a, 'b) dtree = "('a, 'b) node set" wenzelm@20819: wenzelm@20819: consts wenzelm@20819: Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))" wenzelm@20819: wenzelm@20819: Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node" wenzelm@20819: ndepth :: "('a, 'b) node => nat" wenzelm@20819: wenzelm@20819: Atom :: "('a + nat) => ('a, 'b) dtree" wenzelm@20819: Leaf :: "'a => ('a, 'b) dtree" wenzelm@20819: Numb :: "nat => ('a, 'b) dtree" wenzelm@20819: Scons :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree" wenzelm@20819: In0 :: "('a, 'b) dtree => ('a, 'b) dtree" wenzelm@20819: In1 :: "('a, 'b) dtree => ('a, 'b) dtree" wenzelm@20819: Lim :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree" wenzelm@20819: wenzelm@20819: ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree" wenzelm@20819: wenzelm@20819: uprod :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" wenzelm@20819: usum :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" wenzelm@20819: wenzelm@20819: Split :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" wenzelm@20819: Case :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" wenzelm@20819: wenzelm@20819: dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] wenzelm@20819: => (('a, 'b) dtree * ('a, 'b) dtree)set" wenzelm@20819: dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] wenzelm@20819: => (('a, 'b) dtree * ('a, 'b) dtree)set" wenzelm@20819: wenzelm@20819: wenzelm@20819: defs wenzelm@20819: wenzelm@20819: Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" wenzelm@20819: wenzelm@20819: (*crude "lists" of nats -- needed for the constructions*) wenzelm@20819: Push_def: "Push == (%b h. nat_case b h)" wenzelm@20819: wenzelm@20819: (** operations on S-expressions -- sets of nodes **) wenzelm@20819: wenzelm@20819: (*S-expression constructors*) wenzelm@20819: Atom_def: "Atom == (%x. {Abs_Node((%k. Inr 0, x))})" wenzelm@20819: Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" wenzelm@20819: wenzelm@20819: (*Leaf nodes, with arbitrary or nat labels*) wenzelm@20819: Leaf_def: "Leaf == Atom o Inl" wenzelm@20819: Numb_def: "Numb == Atom o Inr" wenzelm@20819: wenzelm@20819: (*Injections of the "disjoint sum"*) wenzelm@20819: In0_def: "In0(M) == Scons (Numb 0) M" wenzelm@20819: In1_def: "In1(M) == Scons (Numb 1) M" wenzelm@20819: wenzelm@20819: (*Function spaces*) wenzelm@20819: Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}" wenzelm@20819: wenzelm@20819: (*the set of nodes with depth less than k*) wenzelm@20819: ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" wenzelm@20819: ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n) R wenzelm@20819: |] ==> R" wenzelm@20819: by (force simp add: apfst_def) wenzelm@20819: wenzelm@20819: (** Push -- an injection, analogous to Cons on lists **) wenzelm@20819: wenzelm@20819: lemma Push_inject1: "Push i f = Push j g ==> i=j" wenzelm@20819: apply (simp add: Push_def expand_fun_eq) wenzelm@20819: apply (drule_tac x=0 in spec, simp) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Push_inject2: "Push i f = Push j g ==> f=g" wenzelm@20819: apply (auto simp add: Push_def expand_fun_eq) wenzelm@20819: apply (drule_tac x="Suc x" in spec, simp) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Push_inject: wenzelm@20819: "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" wenzelm@20819: by (blast dest: Push_inject1 Push_inject2) wenzelm@20819: wenzelm@20819: lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" wenzelm@20819: by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) wenzelm@20819: wenzelm@20819: lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Introduction rules for Node ***) wenzelm@20819: wenzelm@20819: lemma Node_K0_I: "(%k. Inr 0, a) : Node" wenzelm@20819: by (simp add: Node_def) wenzelm@20819: wenzelm@20819: lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" wenzelm@20819: apply (simp add: Node_def Push_def) wenzelm@20819: apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: subsection{*Freeness: Distinctness of Constructors*} wenzelm@20819: wenzelm@20819: (** Scons vs Atom **) wenzelm@20819: wenzelm@20819: lemma Scons_not_Atom [iff]: "Scons M N \ Atom(a)" wenzelm@20819: apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) wenzelm@20819: apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] wenzelm@20819: dest!: Abs_Node_inj wenzelm@20819: elim!: apfst_convE sym [THEN Push_neq_K0]) wenzelm@20819: done wenzelm@20819: haftmann@21407: lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym, standard] haftmann@21407: wenzelm@20819: wenzelm@20819: (*** Injectiveness ***) wenzelm@20819: wenzelm@20819: (** Atomic nodes **) wenzelm@20819: wenzelm@20819: lemma inj_Atom: "inj(Atom)" wenzelm@20819: apply (simp add: Atom_def) wenzelm@20819: apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) wenzelm@20819: done wenzelm@20819: lemmas Atom_inject = inj_Atom [THEN injD, standard] wenzelm@20819: wenzelm@20819: lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" wenzelm@20819: by (blast dest!: Atom_inject) wenzelm@20819: wenzelm@20819: lemma inj_Leaf: "inj(Leaf)" wenzelm@20819: apply (simp add: Leaf_def o_def) wenzelm@20819: apply (rule inj_onI) wenzelm@20819: apply (erule Atom_inject [THEN Inl_inject]) wenzelm@20819: done wenzelm@20819: haftmann@21407: lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD, standard] wenzelm@20819: wenzelm@20819: lemma inj_Numb: "inj(Numb)" wenzelm@20819: apply (simp add: Numb_def o_def) wenzelm@20819: apply (rule inj_onI) wenzelm@20819: apply (erule Atom_inject [THEN Inr_inject]) wenzelm@20819: done wenzelm@20819: haftmann@21407: lemmas Numb_inject [dest!] = inj_Numb [THEN injD, standard] wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injectiveness of Push_Node **) wenzelm@20819: wenzelm@20819: lemma Push_Node_inject: wenzelm@20819: "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: apply (simp add: Push_Node_def) wenzelm@20819: apply (erule Abs_Node_inj [THEN apfst_convE]) wenzelm@20819: apply (rule Rep_Node [THEN Node_Push_I])+ wenzelm@20819: apply (erule sym [THEN apfst_convE]) wenzelm@20819: apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injectiveness of Scons **) wenzelm@20819: wenzelm@20819: lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" wenzelm@20819: apply (simp add: Scons_def One_nat_def) wenzelm@20819: apply (blast dest!: Push_Node_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" wenzelm@20819: apply (simp add: Scons_def One_nat_def) wenzelm@20819: apply (blast dest!: Push_Node_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" wenzelm@20819: apply (erule equalityE) wenzelm@20819: apply (iprover intro: equalityI Scons_inject_lemma1) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" wenzelm@20819: apply (erule equalityE) wenzelm@20819: apply (iprover intro: equalityI Scons_inject_lemma2) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject: wenzelm@20819: "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" wenzelm@20819: by (iprover dest: Scons_inject1 Scons_inject2) wenzelm@20819: wenzelm@20819: lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" wenzelm@20819: by (blast elim!: Scons_inject) wenzelm@20819: wenzelm@20819: (*** Distinctness involving Leaf and Numb ***) wenzelm@20819: wenzelm@20819: (** Scons vs Leaf **) wenzelm@20819: wenzelm@20819: lemma Scons_not_Leaf [iff]: "Scons M N \ Leaf(a)" wenzelm@20819: by (simp add: Leaf_def o_def Scons_not_Atom) wenzelm@20819: haftmann@21407: lemmas Leaf_not_Scons [iff] = Scons_not_Leaf [THEN not_sym, standard] wenzelm@20819: wenzelm@20819: (** Scons vs Numb **) wenzelm@20819: wenzelm@20819: lemma Scons_not_Numb [iff]: "Scons M N \ Numb(k)" wenzelm@20819: by (simp add: Numb_def o_def Scons_not_Atom) wenzelm@20819: haftmann@21407: lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym, standard] wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Leaf vs Numb **) wenzelm@20819: wenzelm@20819: lemma Leaf_not_Numb [iff]: "Leaf(a) \ Numb(k)" wenzelm@20819: by (simp add: Leaf_def Numb_def) wenzelm@20819: haftmann@21407: lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym, standard] wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** ndepth -- the depth of a node ***) wenzelm@20819: wenzelm@20819: lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" wenzelm@20819: by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) wenzelm@20819: wenzelm@20819: lemma ndepth_Push_Node_aux: wenzelm@20819: "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" wenzelm@20819: apply (induct_tac "k", auto) wenzelm@20819: apply (erule Least_le) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ndepth_Push_Node: wenzelm@20819: "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" wenzelm@20819: apply (insert Rep_Node [of n, unfolded Node_def]) wenzelm@20819: apply (auto simp add: ndepth_def Push_Node_def wenzelm@20819: Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) wenzelm@20819: apply (rule Least_equality) wenzelm@20819: apply (auto simp add: Push_def ndepth_Push_Node_aux) wenzelm@20819: apply (erule LeastI) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** ntrunc applied to the various node sets ***) wenzelm@20819: wenzelm@20819: lemma ntrunc_0 [simp]: "ntrunc 0 M = {}" wenzelm@20819: by (simp add: ntrunc_def) wenzelm@20819: wenzelm@20819: lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" wenzelm@20819: by (auto simp add: Atom_def ntrunc_def ndepth_K0) wenzelm@20819: wenzelm@20819: lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" wenzelm@20819: by (simp add: Leaf_def o_def ntrunc_Atom) wenzelm@20819: wenzelm@20819: lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" wenzelm@20819: by (simp add: Numb_def o_def ntrunc_Atom) wenzelm@20819: wenzelm@20819: lemma ntrunc_Scons [simp]: wenzelm@20819: "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" wenzelm@20819: by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) wenzelm@20819: wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injection nodes **) wenzelm@20819: wenzelm@20819: lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}" wenzelm@20819: apply (simp add: In0_def) wenzelm@20819: apply (simp add: Scons_def) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" wenzelm@20819: by (simp add: In0_def) wenzelm@20819: wenzelm@20819: lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}" wenzelm@20819: apply (simp add: In1_def) wenzelm@20819: apply (simp add: Scons_def) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" wenzelm@20819: by (simp add: In1_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: subsection{*Set Constructions*} wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Cartesian Product ***) wenzelm@20819: wenzelm@20819: lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" wenzelm@20819: by (simp add: uprod_def) wenzelm@20819: wenzelm@20819: (*The general elimination rule*) wenzelm@20819: lemma uprodE [elim!]: wenzelm@20819: "[| c : uprod A B; wenzelm@20819: !!x y. [| x:A; y:B; c = Scons x y |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: uprod_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*Elimination of a pair -- introduces no eigenvariables*) wenzelm@20819: lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" wenzelm@20819: by (auto simp add: uprod_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Disjoint Sum ***) wenzelm@20819: wenzelm@20819: lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" wenzelm@20819: by (simp add: usum_def) wenzelm@20819: wenzelm@20819: lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" wenzelm@20819: by (simp add: usum_def) wenzelm@20819: wenzelm@20819: lemma usumE [elim!]: wenzelm@20819: "[| u : usum A B; wenzelm@20819: !!x. [| x:A; u=In0(x) |] ==> P; wenzelm@20819: !!y. [| y:B; u=In1(y) |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: usum_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injection **) wenzelm@20819: wenzelm@20819: lemma In0_not_In1 [iff]: "In0(M) \ In1(N)" wenzelm@20819: by (auto simp add: In0_def In1_def One_nat_def) wenzelm@20819: haftmann@21407: lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym, standard] wenzelm@20819: wenzelm@20819: lemma In0_inject: "In0(M) = In0(N) ==> M=N" wenzelm@20819: by (simp add: In0_def) wenzelm@20819: wenzelm@20819: lemma In1_inject: "In1(M) = In1(N) ==> M=N" wenzelm@20819: by (simp add: In1_def) wenzelm@20819: wenzelm@20819: lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" wenzelm@20819: by (blast dest!: In0_inject) wenzelm@20819: wenzelm@20819: lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" wenzelm@20819: by (blast dest!: In1_inject) wenzelm@20819: wenzelm@20819: lemma inj_In0: "inj In0" wenzelm@20819: by (blast intro!: inj_onI) wenzelm@20819: wenzelm@20819: lemma inj_In1: "inj In1" wenzelm@20819: by (blast intro!: inj_onI) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Function spaces ***) wenzelm@20819: wenzelm@20819: lemma Lim_inject: "Lim f = Lim g ==> f = g" wenzelm@20819: apply (simp add: Lim_def) wenzelm@20819: apply (rule ext) wenzelm@20819: apply (blast elim!: Push_Node_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** proving equality of sets and functions using ntrunc ***) wenzelm@20819: wenzelm@20819: lemma ntrunc_subsetI: "ntrunc k M <= M" wenzelm@20819: by (auto simp add: ntrunc_def) wenzelm@20819: wenzelm@20819: lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" wenzelm@20819: by (auto simp add: ntrunc_def) wenzelm@20819: wenzelm@20819: (*A generalized form of the take-lemma*) wenzelm@20819: lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" wenzelm@20819: apply (rule equalityI) wenzelm@20819: apply (rule_tac [!] ntrunc_subsetD) wenzelm@20819: apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ntrunc_o_equality: wenzelm@20819: "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" wenzelm@20819: apply (rule ntrunc_equality [THEN ext]) wenzelm@20819: apply (simp add: expand_fun_eq) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Monotonicity ***) wenzelm@20819: wenzelm@20819: lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" wenzelm@20819: by (simp add: uprod_def, blast) wenzelm@20819: wenzelm@20819: lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" wenzelm@20819: by (simp add: usum_def, blast) wenzelm@20819: wenzelm@20819: lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" wenzelm@20819: by (simp add: Scons_def, blast) wenzelm@20819: wenzelm@20819: lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" wenzelm@20819: by (simp add: In0_def subset_refl Scons_mono) wenzelm@20819: wenzelm@20819: lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" wenzelm@20819: by (simp add: In1_def subset_refl Scons_mono) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Split and Case ***) wenzelm@20819: wenzelm@20819: lemma Split [simp]: "Split c (Scons M N) = c M N" wenzelm@20819: by (simp add: Split_def) wenzelm@20819: wenzelm@20819: lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" wenzelm@20819: by (simp add: Case_def) wenzelm@20819: wenzelm@20819: lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" wenzelm@20819: by (simp add: Case_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: wenzelm@20819: (**** UN x. B(x) rules ****) wenzelm@20819: wenzelm@20819: lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" wenzelm@20819: by (simp add: ntrunc_def, blast) wenzelm@20819: wenzelm@20819: lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" wenzelm@20819: by (simp add: Scons_def, blast) wenzelm@20819: wenzelm@20819: lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" wenzelm@20819: by (simp add: Scons_def, blast) wenzelm@20819: wenzelm@20819: lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" wenzelm@20819: by (simp add: In0_def Scons_UN1_y) wenzelm@20819: wenzelm@20819: lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" wenzelm@20819: by (simp add: In1_def Scons_UN1_y) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Equality for Cartesian Product ***) wenzelm@20819: wenzelm@20819: lemma dprodI [intro!]: wenzelm@20819: "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" wenzelm@20819: by (auto simp add: dprod_def) wenzelm@20819: wenzelm@20819: (*The general elimination rule*) wenzelm@20819: lemma dprodE [elim!]: wenzelm@20819: "[| c : dprod r s; wenzelm@20819: !!x y x' y'. [| (x,x') : r; (y,y') : s; wenzelm@20819: c = (Scons x y, Scons x' y') |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: dprod_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Equality for Disjoint Sum ***) wenzelm@20819: wenzelm@20819: lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" wenzelm@20819: by (auto simp add: dsum_def) wenzelm@20819: wenzelm@20819: lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" wenzelm@20819: by (auto simp add: dsum_def) wenzelm@20819: wenzelm@20819: lemma dsumE [elim!]: wenzelm@20819: "[| w : dsum r s; wenzelm@20819: !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; wenzelm@20819: !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: dsum_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Monotonicity ***) wenzelm@20819: wenzelm@20819: lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Bounding theorems ***) wenzelm@20819: wenzelm@20819: lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] wenzelm@20819: wenzelm@20819: (*Dependent version*) wenzelm@20819: lemma dprod_subset_Sigma2: wenzelm@20819: "(dprod (Sigma A B) (Sigma C D)) <= wenzelm@20819: Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" wenzelm@20819: by auto wenzelm@20819: wenzelm@20819: lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] wenzelm@20819: wenzelm@20819: haftmann@24162: text {* hides popular names *} haftmann@24162: hide (open) type node item wenzelm@20819: hide (open) const Push Node Atom Leaf Numb Lim Split Case wenzelm@20819: wenzelm@20819: wenzelm@20819: section {* Datatypes *} wenzelm@20819: haftmann@24699: subsection {* Representing sums *} wenzelm@12918: haftmann@27104: rep_datatype (sum) Inl Inr haftmann@27104: proof - haftmann@27104: fix P haftmann@27104: fix s :: "'a + 'b" haftmann@27104: assume x: "\x\'a. P (Inl x)" and y: "\y\'b. P (Inr y)" haftmann@27104: then show "P s" by (auto intro: sumE [of s]) haftmann@27104: qed simp_all haftmann@24194: nipkow@22230: lemma sum_case_KK[simp]: "sum_case (%x. a) (%x. a) = (%x. a)" nipkow@22230: by (rule ext) (simp split: sum.split) nipkow@22230: wenzelm@12918: lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)" wenzelm@12918: apply (rule_tac s = s in sumE) wenzelm@12918: apply (erule ssubst) wenzelm@20798: apply (rule sum.cases(1)) wenzelm@12918: apply (erule ssubst) wenzelm@20798: apply (rule sum.cases(2)) wenzelm@12918: done wenzelm@12918: wenzelm@12918: lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t" wenzelm@12918: -- {* Prevents simplification of @{text f} and @{text g}: much faster. *} wenzelm@20798: by simp wenzelm@12918: wenzelm@12918: lemma sum_case_inject: wenzelm@12918: "sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P" wenzelm@12918: proof - wenzelm@12918: assume a: "sum_case f1 f2 = sum_case g1 g2" wenzelm@12918: assume r: "f1 = g1 ==> f2 = g2 ==> P" wenzelm@12918: show P wenzelm@12918: apply (rule r) wenzelm@12918: apply (rule ext) paulson@14208: apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp) wenzelm@12918: apply (rule ext) paulson@14208: apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp) wenzelm@12918: done wenzelm@12918: qed wenzelm@12918: berghofe@13635: constdefs berghofe@13635: Suml :: "('a => 'c) => 'a + 'b => 'c" haftmann@28524: "Suml == (%f. sum_case f undefined)" berghofe@13635: berghofe@13635: Sumr :: "('b => 'c) => 'a + 'b => 'c" haftmann@28524: "Sumr == sum_case undefined" berghofe@13635: berghofe@13635: lemma Suml_inject: "Suml f = Suml g ==> f = g" berghofe@13635: by (unfold Suml_def) (erule sum_case_inject) berghofe@13635: berghofe@13635: lemma Sumr_inject: "Sumr f = Sumr g ==> f = g" berghofe@13635: by (unfold Sumr_def) (erule sum_case_inject) berghofe@13635: krauss@29183: primrec Projl :: "'a + 'b => 'a" krauss@29183: where Projl_Inl: "Projl (Inl x) = x" krauss@29183: krauss@29183: primrec Projr :: "'a + 'b => 'b" krauss@29183: where Projr_Inr: "Projr (Inr x) = x" krauss@29183: krauss@29183: hide (open) const Suml Sumr Projl Projr berghofe@13635: berghofe@5181: end