wenzelm@21256: (* Title: HOL/GCD.thy wenzelm@21256: Author: Christophe Tabacznyj and Lawrence C Paulson wenzelm@21256: Copyright 1996 University of Cambridge wenzelm@21256: *) wenzelm@21256: wenzelm@21256: header {* The Greatest Common Divisor *} wenzelm@21256: wenzelm@21256: theory GCD haftmann@29655: imports Plain Presburger Main wenzelm@21256: begin wenzelm@21256: wenzelm@21256: text {* haftmann@23687: See \cite{davenport92}. \bigskip wenzelm@21256: *} wenzelm@21256: haftmann@23687: subsection {* Specification of GCD on nats *} wenzelm@21256: wenzelm@21263: definition haftmann@23687: is_gcd :: "nat \ nat \ nat \ bool" where -- {* @{term gcd} as a relation *} haftmann@28562: [code del]: "is_gcd m n p \ p dvd m \ p dvd n \ haftmann@23687: (\d. d dvd m \ d dvd n \ d dvd p)" haftmann@23687: haftmann@23687: text {* Uniqueness *} haftmann@23687: haftmann@27556: lemma is_gcd_unique: "is_gcd a b m \ is_gcd a b n \ m = n" haftmann@23687: by (simp add: is_gcd_def) (blast intro: dvd_anti_sym) haftmann@23687: haftmann@23687: text {* Connection to divides relation *} wenzelm@21256: haftmann@27556: lemma is_gcd_dvd: "is_gcd a b m \ k dvd a \ k dvd b \ k dvd m" haftmann@23687: by (auto simp add: is_gcd_def) haftmann@23687: haftmann@23687: text {* Commutativity *} haftmann@23687: haftmann@27556: lemma is_gcd_commute: "is_gcd m n k = is_gcd n m k" haftmann@23687: by (auto simp add: is_gcd_def) haftmann@23687: haftmann@23687: haftmann@23687: subsection {* GCD on nat by Euclid's algorithm *} haftmann@23687: chaieb@27568: fun chaieb@27568: gcd :: "nat => nat => nat" chaieb@27568: where haftmann@27556: "gcd m n = (if n = 0 then m else gcd n (m mod n))" haftmann@27556: lemma gcd_induct [case_names "0" rec]: haftmann@23687: fixes m n :: nat haftmann@23687: assumes "\m. P m 0" haftmann@23687: and "\m n. 0 < n \ P n (m mod n) \ P m n" haftmann@23687: shows "P m n" haftmann@27556: proof (induct m n rule: gcd.induct) haftmann@27556: case (1 m n) with assms show ?case by (cases "n = 0") simp_all haftmann@27556: qed wenzelm@21256: chaieb@27669: lemma gcd_0 [simp, algebra]: "gcd m 0 = m" wenzelm@21263: by simp wenzelm@21256: chaieb@27669: lemma gcd_0_left [simp,algebra]: "gcd 0 m = m" haftmann@23687: by simp haftmann@23687: haftmann@27556: lemma gcd_non_0: "n > 0 \ gcd m n = gcd n (m mod n)" haftmann@23687: by simp haftmann@23687: huffman@30082: lemma gcd_1 [simp, algebra]: "gcd m (Suc 0) = Suc 0" wenzelm@21263: by simp wenzelm@21256: huffman@30082: lemma nat_gcd_1_right [simp, algebra]: "gcd m 1 = 1" huffman@30082: unfolding One_nat_def by (rule gcd_1) huffman@30082: wenzelm@21256: declare gcd.simps [simp del] wenzelm@21256: wenzelm@21256: text {* haftmann@27556: \medskip @{term "gcd m n"} divides @{text m} and @{text n}. The wenzelm@21256: conjunctions don't seem provable separately. wenzelm@21256: *} wenzelm@21256: chaieb@27669: lemma gcd_dvd1 [iff, algebra]: "gcd m n dvd m" chaieb@27669: and gcd_dvd2 [iff, algebra]: "gcd m n dvd n" wenzelm@21256: apply (induct m n rule: gcd_induct) wenzelm@21263: apply (simp_all add: gcd_non_0) wenzelm@21256: apply (blast dest: dvd_mod_imp_dvd) wenzelm@21256: done wenzelm@21256: wenzelm@21256: text {* wenzelm@21256: \medskip Maximality: for all @{term m}, @{term n}, @{term k} wenzelm@21256: naturals, if @{term k} divides @{term m} and @{term k} divides haftmann@27556: @{term n} then @{term k} divides @{term "gcd m n"}. wenzelm@21256: *} wenzelm@21256: haftmann@27556: lemma gcd_greatest: "k dvd m \ k dvd n \ k dvd gcd m n" wenzelm@21263: by (induct m n rule: gcd_induct) (simp_all add: gcd_non_0 dvd_mod) wenzelm@21256: wenzelm@21256: text {* wenzelm@21256: \medskip Function gcd yields the Greatest Common Divisor. wenzelm@21256: *} wenzelm@21256: haftmann@27556: lemma is_gcd: "is_gcd m n (gcd m n) " haftmann@23687: by (simp add: is_gcd_def gcd_greatest) wenzelm@21256: wenzelm@21256: haftmann@23687: subsection {* Derived laws for GCD *} wenzelm@21256: chaieb@27669: lemma gcd_greatest_iff [iff, algebra]: "k dvd gcd m n \ k dvd m \ k dvd n" haftmann@23687: by (blast intro!: gcd_greatest intro: dvd_trans) haftmann@23687: chaieb@27669: lemma gcd_zero[algebra]: "gcd m n = 0 \ m = 0 \ n = 0" haftmann@23687: by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff) wenzelm@21256: haftmann@27556: lemma gcd_commute: "gcd m n = gcd n m" wenzelm@21256: apply (rule is_gcd_unique) wenzelm@21256: apply (rule is_gcd) wenzelm@21256: apply (subst is_gcd_commute) wenzelm@21256: apply (simp add: is_gcd) wenzelm@21256: done wenzelm@21256: haftmann@27556: lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)" wenzelm@21256: apply (rule is_gcd_unique) wenzelm@21256: apply (rule is_gcd) wenzelm@21256: apply (simp add: is_gcd_def) wenzelm@21256: apply (blast intro: dvd_trans) wenzelm@21256: done wenzelm@21256: huffman@30082: lemma gcd_1_left [simp, algebra]: "gcd (Suc 0) m = Suc 0" haftmann@23687: by (simp add: gcd_commute) wenzelm@21256: huffman@30082: lemma nat_gcd_1_left [simp, algebra]: "gcd 1 m = 1" huffman@30082: unfolding One_nat_def by (rule gcd_1_left) huffman@30082: wenzelm@21256: text {* wenzelm@21256: \medskip Multiplication laws wenzelm@21256: *} wenzelm@21256: haftmann@27556: lemma gcd_mult_distrib2: "k * gcd m n = gcd (k * m) (k * n)" wenzelm@21256: -- {* \cite[page 27]{davenport92} *} wenzelm@21256: apply (induct m n rule: gcd_induct) wenzelm@21256: apply simp wenzelm@21256: apply (case_tac "k = 0") wenzelm@21256: apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2) wenzelm@21256: done wenzelm@21256: chaieb@27669: lemma gcd_mult [simp, algebra]: "gcd k (k * n) = k" wenzelm@21256: apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric]) wenzelm@21256: done wenzelm@21256: chaieb@27669: lemma gcd_self [simp, algebra]: "gcd k k = k" wenzelm@21256: apply (rule gcd_mult [of k 1, simplified]) wenzelm@21256: done wenzelm@21256: haftmann@27556: lemma relprime_dvd_mult: "gcd k n = 1 ==> k dvd m * n ==> k dvd m" wenzelm@21256: apply (insert gcd_mult_distrib2 [of m k n]) wenzelm@21256: apply simp wenzelm@21256: apply (erule_tac t = m in ssubst) wenzelm@21256: apply simp wenzelm@21256: done wenzelm@21256: haftmann@27556: lemma relprime_dvd_mult_iff: "gcd k n = 1 ==> (k dvd m * n) = (k dvd m)" haftmann@27651: by (auto intro: relprime_dvd_mult dvd_mult2) wenzelm@21256: haftmann@27556: lemma gcd_mult_cancel: "gcd k n = 1 ==> gcd (k * m) n = gcd m n" wenzelm@21256: apply (rule dvd_anti_sym) wenzelm@21256: apply (rule gcd_greatest) wenzelm@21256: apply (rule_tac n = k in relprime_dvd_mult) wenzelm@21256: apply (simp add: gcd_assoc) wenzelm@21256: apply (simp add: gcd_commute) wenzelm@21256: apply (simp_all add: mult_commute) wenzelm@21256: done wenzelm@21256: wenzelm@21256: wenzelm@21256: text {* \medskip Addition laws *} wenzelm@21256: haftmann@27676: lemma gcd_add1 [simp, algebra]: "gcd (m + n) n = gcd m n" haftmann@27676: by (cases "n = 0") (auto simp add: gcd_non_0) wenzelm@21256: chaieb@27669: lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n" wenzelm@21256: proof - haftmann@27556: have "gcd m (m + n) = gcd (m + n) m" by (rule gcd_commute) haftmann@27556: also have "... = gcd (n + m) m" by (simp add: add_commute) haftmann@27556: also have "... = gcd n m" by simp haftmann@27556: also have "... = gcd m n" by (rule gcd_commute) wenzelm@21256: finally show ?thesis . wenzelm@21256: qed wenzelm@21256: chaieb@27669: lemma gcd_add2' [simp, algebra]: "gcd m (n + m) = gcd m n" wenzelm@21256: apply (subst add_commute) wenzelm@21256: apply (rule gcd_add2) wenzelm@21256: done wenzelm@21256: chaieb@27669: lemma gcd_add_mult[algebra]: "gcd m (k * m + n) = gcd m n" wenzelm@21263: by (induct k) (simp_all add: add_assoc) wenzelm@21256: chaieb@27669: lemma gcd_dvd_prod: "gcd m n dvd m * n" haftmann@23687: using mult_dvd_mono [of 1] by auto chaieb@22027: wenzelm@22367: text {* wenzelm@22367: \medskip Division by gcd yields rrelatively primes. wenzelm@22367: *} chaieb@22027: chaieb@22027: lemma div_gcd_relprime: wenzelm@22367: assumes nz: "a \ 0 \ b \ 0" haftmann@27556: shows "gcd (a div gcd a b) (b div gcd a b) = 1" wenzelm@22367: proof - haftmann@27556: let ?g = "gcd a b" chaieb@22027: let ?a' = "a div ?g" chaieb@22027: let ?b' = "b div ?g" haftmann@27556: let ?g' = "gcd ?a' ?b'" chaieb@22027: have dvdg: "?g dvd a" "?g dvd b" by simp_all chaieb@22027: have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all wenzelm@22367: from dvdg dvdg' obtain ka kb ka' kb' where wenzelm@22367: kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" chaieb@22027: unfolding dvd_def by blast wenzelm@22367: then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by simp_all wenzelm@22367: then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" wenzelm@22367: by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] wenzelm@22367: dvd_mult_div_cancel [OF dvdg(2)] dvd_def) chaieb@22027: have "?g \ 0" using nz by (simp add: gcd_zero) wenzelm@22367: then have gp: "?g > 0" by simp wenzelm@22367: from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . wenzelm@22367: with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp chaieb@22027: qed chaieb@22027: chaieb@27669: chaieb@27669: lemma gcd_unique: "d dvd a\d dvd b \ (\e. e dvd a \ e dvd b \ e dvd d) \ d = gcd a b" chaieb@27669: proof(auto) chaieb@27669: assume H: "d dvd a" "d dvd b" "\e. e dvd a \ e dvd b \ e dvd d" chaieb@27669: from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] chaieb@27669: have th: "gcd a b dvd d" by blast chaieb@27669: from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd a b" by blast chaieb@27669: qed chaieb@27669: chaieb@27669: lemma gcd_eq: assumes H: "\d. d dvd x \ d dvd y \ d dvd u \ d dvd v" chaieb@27669: shows "gcd x y = gcd u v" chaieb@27669: proof- chaieb@27669: from H have "\d. d dvd x \ d dvd y \ d dvd gcd u v" by simp chaieb@27669: with gcd_unique[of "gcd u v" x y] show ?thesis by auto chaieb@27669: qed chaieb@27669: chaieb@27669: lemma ind_euclid: chaieb@27669: assumes c: " \a b. P (a::nat) b \ P b a" and z: "\a. P a 0" chaieb@27669: and add: "\a b. P a b \ P a (a + b)" chaieb@27669: shows "P a b" chaieb@27669: proof(induct n\"a+b" arbitrary: a b rule: nat_less_induct) chaieb@27669: fix n a b chaieb@27669: assume H: "\m < n. \a b. m = a + b \ P a b" "n = a + b" chaieb@27669: have "a = b \ a < b \ b < a" by arith chaieb@27669: moreover {assume eq: "a= b" chaieb@27669: from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq by simp} chaieb@27669: moreover chaieb@27669: {assume lt: "a < b" chaieb@27669: hence "a + b - a < n \ a = 0" using H(2) by arith chaieb@27669: moreover chaieb@27669: {assume "a =0" with z c have "P a b" by blast } chaieb@27669: moreover chaieb@27669: {assume ab: "a + b - a < n" chaieb@27669: have th0: "a + b - a = a + (b - a)" using lt by arith chaieb@27669: from add[rule_format, OF H(1)[rule_format, OF ab th0]] chaieb@27669: have "P a b" by (simp add: th0[symmetric])} chaieb@27669: ultimately have "P a b" by blast} chaieb@27669: moreover chaieb@27669: {assume lt: "a > b" chaieb@27669: hence "b + a - b < n \ b = 0" using H(2) by arith chaieb@27669: moreover chaieb@27669: {assume "b =0" with z c have "P a b" by blast } chaieb@27669: moreover chaieb@27669: {assume ab: "b + a - b < n" chaieb@27669: have th0: "b + a - b = b + (a - b)" using lt by arith chaieb@27669: from add[rule_format, OF H(1)[rule_format, OF ab th0]] chaieb@27669: have "P b a" by (simp add: th0[symmetric]) chaieb@27669: hence "P a b" using c by blast } chaieb@27669: ultimately have "P a b" by blast} chaieb@27669: ultimately show "P a b" by blast chaieb@27669: qed chaieb@27669: chaieb@27669: lemma bezout_lemma: chaieb@27669: assumes ex: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x = b * y + d \ b * x = a * y + d)" chaieb@27669: shows "\d x y. d dvd a \ d dvd a + b \ (a * x = (a + b) * y + d \ (a + b) * x = a * y + d)" chaieb@27669: using ex chaieb@27669: apply clarsimp chaieb@27669: apply (rule_tac x="d" in exI, simp add: dvd_add) chaieb@27669: apply (case_tac "a * x = b * y + d" , simp_all) chaieb@27669: apply (rule_tac x="x + y" in exI) chaieb@27669: apply (rule_tac x="y" in exI) chaieb@27669: apply algebra chaieb@27669: apply (rule_tac x="x" in exI) chaieb@27669: apply (rule_tac x="x + y" in exI) chaieb@27669: apply algebra chaieb@27669: done chaieb@27669: chaieb@27669: lemma bezout_add: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x = b * y + d \ b * x = a * y + d)" chaieb@27669: apply(induct a b rule: ind_euclid) chaieb@27669: apply blast chaieb@27669: apply clarify chaieb@27669: apply (rule_tac x="a" in exI, simp add: dvd_add) chaieb@27669: apply clarsimp chaieb@27669: apply (rule_tac x="d" in exI) chaieb@27669: apply (case_tac "a * x = b * y + d", simp_all add: dvd_add) chaieb@27669: apply (rule_tac x="x+y" in exI) chaieb@27669: apply (rule_tac x="y" in exI) chaieb@27669: apply algebra chaieb@27669: apply (rule_tac x="x" in exI) chaieb@27669: apply (rule_tac x="x+y" in exI) chaieb@27669: apply algebra chaieb@27669: done chaieb@27669: chaieb@27669: lemma bezout: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x - b * y = d \ b * x - a * y = d)" chaieb@27669: using bezout_add[of a b] chaieb@27669: apply clarsimp chaieb@27669: apply (rule_tac x="d" in exI, simp) chaieb@27669: apply (rule_tac x="x" in exI) chaieb@27669: apply (rule_tac x="y" in exI) chaieb@27669: apply auto chaieb@27669: done chaieb@27669: chaieb@27669: chaieb@27669: text {* We can get a stronger version with a nonzeroness assumption. *} chaieb@27669: lemma divides_le: "m dvd n ==> m <= n \ n = (0::nat)" by (auto simp add: dvd_def) chaieb@27669: chaieb@27669: lemma bezout_add_strong: assumes nz: "a \ (0::nat)" chaieb@27669: shows "\d x y. d dvd a \ d dvd b \ a * x = b * y + d" chaieb@27669: proof- chaieb@27669: from nz have ap: "a > 0" by simp chaieb@27669: from bezout_add[of a b] chaieb@27669: have "(\d x y. d dvd a \ d dvd b \ a * x = b * y + d) \ (\d x y. d dvd a \ d dvd b \ b * x = a * y + d)" by blast chaieb@27669: moreover chaieb@27669: {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d" chaieb@27669: from H have ?thesis by blast } chaieb@27669: moreover chaieb@27669: {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d" chaieb@27669: {assume b0: "b = 0" with H have ?thesis by simp} chaieb@27669: moreover chaieb@27669: {assume b: "b \ 0" hence bp: "b > 0" by simp chaieb@27669: from divides_le[OF H(2)] b have "d < b \ d = b" using le_less by blast chaieb@27669: moreover chaieb@27669: {assume db: "d=b" chaieb@27669: from prems have ?thesis apply simp chaieb@27669: apply (rule exI[where x = b], simp) chaieb@27669: apply (rule exI[where x = b]) chaieb@27669: by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} chaieb@27669: moreover chaieb@27669: {assume db: "d < b" chaieb@27669: {assume "x=0" hence ?thesis using prems by simp } chaieb@27669: moreover chaieb@27669: {assume x0: "x \ 0" hence xp: "x > 0" by simp chaieb@27669: chaieb@27669: from db have "d \ b - 1" by simp chaieb@27669: hence "d*b \ b*(b - 1)" by simp chaieb@27669: with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] chaieb@27669: have dble: "d*b \ x*b*(b - 1)" using bp by simp chaieb@27669: from H (3) have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" by algebra chaieb@27669: hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp chaieb@27669: hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" chaieb@27669: by (simp only: diff_add_assoc[OF dble, of d, symmetric]) chaieb@27669: hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" chaieb@27669: by (simp only: diff_mult_distrib2 add_commute mult_ac) chaieb@27669: hence ?thesis using H(1,2) chaieb@27669: apply - chaieb@27669: apply (rule exI[where x=d], simp) chaieb@27669: apply (rule exI[where x="(b - 1) * y"]) chaieb@27669: by (rule exI[where x="x*(b - 1) - d"], simp)} chaieb@27669: ultimately have ?thesis by blast} chaieb@27669: ultimately have ?thesis by blast} chaieb@27669: ultimately have ?thesis by blast} chaieb@27669: ultimately show ?thesis by blast chaieb@27669: qed chaieb@27669: chaieb@27669: chaieb@27669: lemma bezout_gcd: "\x y. a * x - b * y = gcd a b \ b * x - a * y = gcd a b" chaieb@27669: proof- chaieb@27669: let ?g = "gcd a b" chaieb@27669: from bezout[of a b] obtain d x y where d: "d dvd a" "d dvd b" "a * x - b * y = d \ b * x - a * y = d" by blast chaieb@27669: from d(1,2) have "d dvd ?g" by simp chaieb@27669: then obtain k where k: "?g = d*k" unfolding dvd_def by blast chaieb@27669: from d(3) have "(a * x - b * y)*k = d*k \ (b * x - a * y)*k = d*k" by blast chaieb@27669: hence "a * x * k - b * y*k = d*k \ b * x * k - a * y*k = d*k" chaieb@27669: by (algebra add: diff_mult_distrib) chaieb@27669: hence "a * (x * k) - b * (y*k) = ?g \ b * (x * k) - a * (y*k) = ?g" chaieb@27669: by (simp add: k mult_assoc) chaieb@27669: thus ?thesis by blast chaieb@27669: qed chaieb@27669: chaieb@27669: lemma bezout_gcd_strong: assumes a: "a \ 0" chaieb@27669: shows "\x y. a * x = b * y + gcd a b" chaieb@27669: proof- chaieb@27669: let ?g = "gcd a b" chaieb@27669: from bezout_add_strong[OF a, of b] chaieb@27669: obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast chaieb@27669: from d(1,2) have "d dvd ?g" by simp chaieb@27669: then obtain k where k: "?g = d*k" unfolding dvd_def by blast chaieb@27669: from d(3) have "a * x * k = (b * y + d) *k " by algebra chaieb@27669: hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) chaieb@27669: thus ?thesis by blast chaieb@27669: qed chaieb@27669: chaieb@27669: lemma gcd_mult_distrib: "gcd(a * c) (b * c) = c * gcd a b" chaieb@27669: by(simp add: gcd_mult_distrib2 mult_commute) chaieb@27669: chaieb@27669: lemma gcd_bezout: "(\x y. a * x - b * y = d \ b * x - a * y = d) \ gcd a b dvd d" chaieb@27669: (is "?lhs \ ?rhs") chaieb@27669: proof- chaieb@27669: let ?g = "gcd a b" chaieb@27669: {assume H: ?rhs then obtain k where k: "d = ?g*k" unfolding dvd_def by blast chaieb@27669: from bezout_gcd[of a b] obtain x y where xy: "a * x - b * y = ?g \ b * x - a * y = ?g" chaieb@27669: by blast chaieb@27669: hence "(a * x - b * y)*k = ?g*k \ (b * x - a * y)*k = ?g*k" by auto chaieb@27669: hence "a * x*k - b * y*k = ?g*k \ b * x * k - a * y*k = ?g*k" chaieb@27669: by (simp only: diff_mult_distrib) chaieb@27669: hence "a * (x*k) - b * (y*k) = d \ b * (x * k) - a * (y*k) = d" chaieb@27669: by (simp add: k[symmetric] mult_assoc) chaieb@27669: hence ?lhs by blast} chaieb@27669: moreover chaieb@27669: {fix x y assume H: "a * x - b * y = d \ b * x - a * y = d" chaieb@27669: have dv: "?g dvd a*x" "?g dvd b * y" "?g dvd b*x" "?g dvd a * y" chaieb@27669: using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all nipkow@30042: from nat_dvd_diff[OF dv(1,2)] nat_dvd_diff[OF dv(3,4)] H chaieb@27669: have ?rhs by auto} chaieb@27669: ultimately show ?thesis by blast chaieb@27669: qed chaieb@27669: chaieb@27669: lemma gcd_bezout_sum: assumes H:"a * x + b * y = d" shows "gcd a b dvd d" chaieb@27669: proof- chaieb@27669: let ?g = "gcd a b" chaieb@27669: have dv: "?g dvd a*x" "?g dvd b * y" chaieb@27669: using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all chaieb@27669: from dvd_add[OF dv] H chaieb@27669: show ?thesis by auto chaieb@27669: qed chaieb@27669: chaieb@27669: lemma gcd_mult': "gcd b (a * b) = b" chaieb@27669: by (simp add: gcd_mult mult_commute[of a b]) chaieb@27669: chaieb@27669: lemma gcd_add: "gcd(a + b) b = gcd a b" chaieb@27669: "gcd(b + a) b = gcd a b" "gcd a (a + b) = gcd a b" "gcd a (b + a) = gcd a b" chaieb@27669: apply (simp_all add: gcd_add1) chaieb@27669: by (simp add: gcd_commute gcd_add1) chaieb@27669: chaieb@27669: lemma gcd_sub: "b <= a ==> gcd(a - b) b = gcd a b" "a <= b ==> gcd a (b - a) = gcd a b" chaieb@27669: proof- chaieb@27669: {fix a b assume H: "b \ (a::nat)" chaieb@27669: hence th: "a - b + b = a" by arith chaieb@27669: from gcd_add(1)[of "a - b" b] th have "gcd(a - b) b = gcd a b" by simp} chaieb@27669: note th = this chaieb@27669: { chaieb@27669: assume ab: "b \ a" chaieb@27669: from th[OF ab] show "gcd (a - b) b = gcd a b" by blast chaieb@27669: next chaieb@27669: assume ab: "a \ b" chaieb@27669: from th[OF ab] show "gcd a (b - a) = gcd a b" chaieb@27669: by (simp add: gcd_commute)} chaieb@27669: qed chaieb@27669: chaieb@27669: haftmann@23687: subsection {* LCM defined by GCD *} wenzelm@22367: chaieb@27669: haftmann@23687: definition haftmann@27556: lcm :: "nat \ nat \ nat" haftmann@23687: where chaieb@27568: lcm_def: "lcm m n = m * n div gcd m n" haftmann@23687: haftmann@23687: lemma prod_gcd_lcm: haftmann@27556: "m * n = gcd m n * lcm m n" haftmann@23687: unfolding lcm_def by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod]) haftmann@23687: haftmann@27556: lemma lcm_0 [simp]: "lcm m 0 = 0" haftmann@23687: unfolding lcm_def by simp haftmann@23687: haftmann@27556: lemma lcm_1 [simp]: "lcm m 1 = m" haftmann@23687: unfolding lcm_def by simp haftmann@23687: haftmann@27556: lemma lcm_0_left [simp]: "lcm 0 n = 0" haftmann@23687: unfolding lcm_def by simp haftmann@23687: haftmann@27556: lemma lcm_1_left [simp]: "lcm 1 m = m" haftmann@23687: unfolding lcm_def by simp haftmann@23687: haftmann@23687: lemma dvd_pos: haftmann@23687: fixes n m :: nat haftmann@23687: assumes "n > 0" and "m dvd n" haftmann@23687: shows "m > 0" haftmann@23687: using assms by (cases m) auto haftmann@23687: haftmann@23951: lemma lcm_least: haftmann@23687: assumes "m dvd k" and "n dvd k" haftmann@27556: shows "lcm m n dvd k" haftmann@23687: proof (cases k) haftmann@23687: case 0 then show ?thesis by auto haftmann@23687: next haftmann@23687: case (Suc _) then have pos_k: "k > 0" by auto haftmann@23687: from assms dvd_pos [OF this] have pos_mn: "m > 0" "n > 0" by auto haftmann@27556: with gcd_zero [of m n] have pos_gcd: "gcd m n > 0" by simp haftmann@23687: from assms obtain p where k_m: "k = m * p" using dvd_def by blast haftmann@23687: from assms obtain q where k_n: "k = n * q" using dvd_def by blast haftmann@23687: from pos_k k_m have pos_p: "p > 0" by auto haftmann@23687: from pos_k k_n have pos_q: "q > 0" by auto haftmann@27556: have "k * k * gcd q p = k * gcd (k * q) (k * p)" haftmann@23687: by (simp add: mult_ac gcd_mult_distrib2) haftmann@27556: also have "\ = k * gcd (m * p * q) (n * q * p)" haftmann@23687: by (simp add: k_m [symmetric] k_n [symmetric]) haftmann@27556: also have "\ = k * p * q * gcd m n" haftmann@23687: by (simp add: mult_ac gcd_mult_distrib2) haftmann@27556: finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n" haftmann@23687: by (simp only: k_m [symmetric] k_n [symmetric]) haftmann@27556: then have "p * q * m * n * gcd q p = p * q * k * gcd m n" haftmann@23687: by (simp add: mult_ac) haftmann@27556: with pos_p pos_q have "m * n * gcd q p = k * gcd m n" haftmann@23687: by simp haftmann@23687: with prod_gcd_lcm [of m n] haftmann@27556: have "lcm m n * gcd q p * gcd m n = k * gcd m n" haftmann@23687: by (simp add: mult_ac) haftmann@27556: with pos_gcd have "lcm m n * gcd q p = k" by simp haftmann@23687: then show ?thesis using dvd_def by auto haftmann@23687: qed haftmann@23687: haftmann@23687: lemma lcm_dvd1 [iff]: haftmann@27556: "m dvd lcm m n" haftmann@23687: proof (cases m) haftmann@23687: case 0 then show ?thesis by simp haftmann@23687: next haftmann@23687: case (Suc _) haftmann@23687: then have mpos: "m > 0" by simp haftmann@23687: show ?thesis haftmann@23687: proof (cases n) haftmann@23687: case 0 then show ?thesis by simp haftmann@23687: next haftmann@23687: case (Suc _) haftmann@23687: then have npos: "n > 0" by simp haftmann@27556: have "gcd m n dvd n" by simp haftmann@27556: then obtain k where "n = gcd m n * k" using dvd_def by auto haftmann@27556: then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" by (simp add: mult_ac) haftmann@23687: also have "\ = m * k" using mpos npos gcd_zero by simp haftmann@23687: finally show ?thesis by (simp add: lcm_def) haftmann@23687: qed haftmann@23687: qed haftmann@23687: haftmann@23687: lemma lcm_dvd2 [iff]: haftmann@27556: "n dvd lcm m n" haftmann@23687: proof (cases n) haftmann@23687: case 0 then show ?thesis by simp haftmann@23687: next haftmann@23687: case (Suc _) haftmann@23687: then have npos: "n > 0" by simp haftmann@23687: show ?thesis haftmann@23687: proof (cases m) haftmann@23687: case 0 then show ?thesis by simp haftmann@23687: next haftmann@23687: case (Suc _) haftmann@23687: then have mpos: "m > 0" by simp haftmann@27556: have "gcd m n dvd m" by simp haftmann@27556: then obtain k where "m = gcd m n * k" using dvd_def by auto haftmann@27556: then have "m * n div gcd m n = (gcd m n * k) * n div gcd m n" by (simp add: mult_ac) haftmann@23687: also have "\ = n * k" using mpos npos gcd_zero by simp haftmann@23687: finally show ?thesis by (simp add: lcm_def) haftmann@23687: qed haftmann@23687: qed haftmann@23687: chaieb@27568: lemma gcd_add1_eq: "gcd (m + k) k = gcd (m + k) m" chaieb@27568: by (simp add: gcd_commute) chaieb@27568: chaieb@27568: lemma gcd_diff2: "m \ n ==> gcd n (n - m) = gcd n m" chaieb@27568: apply (subgoal_tac "n = m + (n - m)") chaieb@27669: apply (erule ssubst, rule gcd_add1_eq, simp) chaieb@27568: done chaieb@27568: haftmann@23687: haftmann@23687: subsection {* GCD and LCM on integers *} wenzelm@22367: wenzelm@22367: definition haftmann@27556: zgcd :: "int \ int \ int" where haftmann@27556: "zgcd i j = int (gcd (nat (abs i)) (nat (abs j)))" wenzelm@22367: chaieb@27669: lemma zgcd_zdvd1 [iff,simp, algebra]: "zgcd i j dvd i" nipkow@29700: by (simp add: zgcd_def int_dvd_iff) chaieb@22027: chaieb@27669: lemma zgcd_zdvd2 [iff,simp, algebra]: "zgcd i j dvd j" nipkow@29700: by (simp add: zgcd_def int_dvd_iff) chaieb@22027: haftmann@27556: lemma zgcd_pos: "zgcd i j \ 0" nipkow@29700: by (simp add: zgcd_def) wenzelm@22367: chaieb@27669: lemma zgcd0 [simp,algebra]: "(zgcd i j = 0) = (i = 0 \ j = 0)" nipkow@29700: by (simp add: zgcd_def gcd_zero) chaieb@22027: haftmann@27556: lemma zgcd_commute: "zgcd i j = zgcd j i" nipkow@29700: unfolding zgcd_def by (simp add: gcd_commute) wenzelm@22367: chaieb@27669: lemma zgcd_zminus [simp, algebra]: "zgcd (- i) j = zgcd i j" nipkow@29700: unfolding zgcd_def by simp wenzelm@22367: chaieb@27669: lemma zgcd_zminus2 [simp, algebra]: "zgcd i (- j) = zgcd i j" nipkow@29700: unfolding zgcd_def by simp wenzelm@22367: chaieb@27669: (* should be solved by algebra*) haftmann@27556: lemma zrelprime_dvd_mult: "zgcd i j = 1 \ i dvd k * j \ i dvd k" haftmann@27556: unfolding zgcd_def wenzelm@22367: proof - haftmann@27556: assume "int (gcd (nat \i\) (nat \j\)) = 1" "i dvd k * j" haftmann@27556: then have g: "gcd (nat \i\) (nat \j\) = 1" by simp wenzelm@22367: from `i dvd k * j` obtain h where h: "k*j = i*h" unfolding dvd_def by blast chaieb@22027: have th: "nat \i\ dvd nat \k\ * nat \j\" wenzelm@22367: unfolding dvd_def wenzelm@22367: by (rule_tac x= "nat \h\" in exI, simp add: h nat_abs_mult_distrib [symmetric]) wenzelm@22367: from relprime_dvd_mult [OF g th] obtain h' where h': "nat \k\ = nat \i\ * h'" chaieb@22027: unfolding dvd_def by blast chaieb@22027: from h' have "int (nat \k\) = int (nat \i\ * h')" by simp huffman@23431: then have "\k\ = \i\ * int h'" by (simp add: int_mult) chaieb@22027: then show ?thesis nipkow@30042: apply (subst abs_dvd_iff [symmetric]) nipkow@30042: apply (subst dvd_abs_iff [symmetric]) chaieb@22027: apply (unfold dvd_def) wenzelm@22367: apply (rule_tac x = "int h'" in exI, simp) chaieb@22027: done chaieb@22027: qed chaieb@22027: haftmann@27556: lemma int_nat_abs: "int (nat (abs x)) = abs x" by arith wenzelm@22367: haftmann@27556: lemma zgcd_greatest: wenzelm@22367: assumes "k dvd m" and "k dvd n" haftmann@27556: shows "k dvd zgcd m n" wenzelm@22367: proof - chaieb@22027: let ?k' = "nat \k\" chaieb@22027: let ?m' = "nat \m\" chaieb@22027: let ?n' = "nat \n\" wenzelm@22367: from `k dvd m` and `k dvd n` have dvd': "?k' dvd ?m'" "?k' dvd ?n'" nipkow@30042: unfolding zdvd_int by (simp_all only: int_nat_abs abs_dvd_iff dvd_abs_iff) haftmann@27556: from gcd_greatest [OF dvd'] have "int (nat \k\) dvd zgcd m n" haftmann@27556: unfolding zgcd_def by (simp only: zdvd_int) haftmann@27556: then have "\k\ dvd zgcd m n" by (simp only: int_nat_abs) nipkow@30042: then show "k dvd zgcd m n" by simp chaieb@22027: qed chaieb@22027: haftmann@27556: lemma div_zgcd_relprime: wenzelm@22367: assumes nz: "a \ 0 \ b \ 0" haftmann@27556: shows "zgcd (a div (zgcd a b)) (b div (zgcd a b)) = 1" wenzelm@22367: proof - chaieb@25112: from nz have nz': "nat \a\ \ 0 \ nat \b\ \ 0" by arith haftmann@27556: let ?g = "zgcd a b" chaieb@22027: let ?a' = "a div ?g" chaieb@22027: let ?b' = "b div ?g" haftmann@27556: let ?g' = "zgcd ?a' ?b'" chaieb@27568: have dvdg: "?g dvd a" "?g dvd b" by (simp_all add: zgcd_zdvd1 zgcd_zdvd2) chaieb@27568: have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by (simp_all add: zgcd_zdvd1 zgcd_zdvd2) wenzelm@22367: from dvdg dvdg' obtain ka kb ka' kb' where wenzelm@22367: kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'" chaieb@22027: unfolding dvd_def by blast wenzelm@22367: then have "?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all wenzelm@22367: then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" wenzelm@22367: by (auto simp add: zdvd_mult_div_cancel [OF dvdg(1)] wenzelm@22367: zdvd_mult_div_cancel [OF dvdg(2)] dvd_def) chaieb@22027: have "?g \ 0" using nz by simp haftmann@27556: then have gp: "?g \ 0" using zgcd_pos[where i="a" and j="b"] by arith haftmann@27556: from zgcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . wenzelm@22367: with zdvd_mult_cancel1 [OF gp] have "\?g'\ = 1" by simp haftmann@27556: with zgcd_pos show "?g' = 1" by simp chaieb@22027: qed chaieb@22027: chaieb@27669: lemma zgcd_0 [simp, algebra]: "zgcd m 0 = abs m" chaieb@27568: by (simp add: zgcd_def abs_if) chaieb@27568: chaieb@27669: lemma zgcd_0_left [simp, algebra]: "zgcd 0 m = abs m" chaieb@27568: by (simp add: zgcd_def abs_if) chaieb@27568: chaieb@27568: lemma zgcd_non_0: "0 < n ==> zgcd m n = zgcd n (m mod n)" chaieb@27568: apply (frule_tac b = n and a = m in pos_mod_sign) chaieb@27568: apply (simp del: pos_mod_sign add: zgcd_def abs_if nat_mod_distrib) chaieb@27568: apply (auto simp add: gcd_non_0 nat_mod_distrib [symmetric] zmod_zminus1_eq_if) chaieb@27568: apply (frule_tac a = m in pos_mod_bound) chaieb@27568: apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2 nat_le_eq_zle) chaieb@27568: done chaieb@27568: chaieb@27568: lemma zgcd_eq: "zgcd m n = zgcd n (m mod n)" chaieb@27568: apply (case_tac "n = 0", simp add: DIVISION_BY_ZERO) chaieb@27568: apply (auto simp add: linorder_neq_iff zgcd_non_0) chaieb@27568: apply (cut_tac m = "-m" and n = "-n" in zgcd_non_0, auto) chaieb@27568: done chaieb@27568: chaieb@27669: lemma zgcd_1 [simp, algebra]: "zgcd m 1 = 1" chaieb@27568: by (simp add: zgcd_def abs_if) chaieb@27568: chaieb@27669: lemma zgcd_0_1_iff [simp, algebra]: "zgcd 0 m = 1 \ \m\ = 1" chaieb@27568: by (simp add: zgcd_def abs_if) chaieb@27568: chaieb@27669: lemma zgcd_greatest_iff[algebra]: "k dvd zgcd m n = (k dvd m \ k dvd n)" chaieb@27568: by (simp add: zgcd_def abs_if int_dvd_iff dvd_int_iff nat_dvd_iff) chaieb@27568: chaieb@27669: lemma zgcd_1_left [simp, algebra]: "zgcd 1 m = 1" chaieb@27568: by (simp add: zgcd_def gcd_1_left) chaieb@27568: chaieb@27568: lemma zgcd_assoc: "zgcd (zgcd k m) n = zgcd k (zgcd m n)" chaieb@27568: by (simp add: zgcd_def gcd_assoc) chaieb@27568: chaieb@27568: lemma zgcd_left_commute: "zgcd k (zgcd m n) = zgcd m (zgcd k n)" chaieb@27568: apply (rule zgcd_commute [THEN trans]) chaieb@27568: apply (rule zgcd_assoc [THEN trans]) chaieb@27568: apply (rule zgcd_commute [THEN arg_cong]) chaieb@27568: done chaieb@27568: chaieb@27568: lemmas zgcd_ac = zgcd_assoc zgcd_commute zgcd_left_commute chaieb@27568: -- {* addition is an AC-operator *} chaieb@27568: chaieb@27568: lemma zgcd_zmult_distrib2: "0 \ k ==> k * zgcd m n = zgcd (k * m) (k * n)" chaieb@27568: by (simp del: minus_mult_right [symmetric] chaieb@27568: add: minus_mult_right nat_mult_distrib zgcd_def abs_if chaieb@27568: mult_less_0_iff gcd_mult_distrib2 [symmetric] zmult_int [symmetric]) chaieb@27568: chaieb@27568: lemma zgcd_zmult_distrib2_abs: "zgcd (k * m) (k * n) = abs k * zgcd m n" chaieb@27568: by (simp add: abs_if zgcd_zmult_distrib2) chaieb@27568: chaieb@27568: lemma zgcd_self [simp]: "0 \ m ==> zgcd m m = m" chaieb@27568: by (cut_tac k = m and m = 1 and n = 1 in zgcd_zmult_distrib2, simp_all) chaieb@27568: chaieb@27568: lemma zgcd_zmult_eq_self [simp]: "0 \ k ==> zgcd k (k * n) = k" chaieb@27568: by (cut_tac k = k and m = 1 and n = n in zgcd_zmult_distrib2, simp_all) chaieb@27568: chaieb@27568: lemma zgcd_zmult_eq_self2 [simp]: "0 \ k ==> zgcd (k * n) k = k" chaieb@27568: by (cut_tac k = k and m = n and n = 1 in zgcd_zmult_distrib2, simp_all) chaieb@27568: chaieb@27568: chaieb@27568: definition "zlcm i j = int (lcm(nat(abs i)) (nat(abs j)))" chaieb@23244: chaieb@27669: lemma dvd_zlcm_self1[simp, algebra]: "i dvd zlcm i j" haftmann@27556: by(simp add:zlcm_def dvd_int_iff) nipkow@23983: chaieb@27669: lemma dvd_zlcm_self2[simp, algebra]: "j dvd zlcm i j" haftmann@27556: by(simp add:zlcm_def dvd_int_iff) nipkow@23983: chaieb@23244: haftmann@27556: lemma dvd_imp_dvd_zlcm1: haftmann@27556: assumes "k dvd i" shows "k dvd (zlcm i j)" nipkow@23983: proof - nipkow@23983: have "nat(abs k) dvd nat(abs i)" using `k dvd i` nipkow@30042: by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric]) haftmann@27556: thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans) nipkow@23983: qed nipkow@23983: haftmann@27556: lemma dvd_imp_dvd_zlcm2: haftmann@27556: assumes "k dvd j" shows "k dvd (zlcm i j)" nipkow@23983: proof - nipkow@23983: have "nat(abs k) dvd nat(abs j)" using `k dvd j` nipkow@30042: by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric]) haftmann@27556: thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans) nipkow@23983: qed nipkow@23983: chaieb@23994: chaieb@23244: lemma zdvd_self_abs1: "(d::int) dvd (abs d)" chaieb@23244: by (case_tac "d <0", simp_all) chaieb@23244: chaieb@23244: lemma zdvd_self_abs2: "(abs (d::int)) dvd d" chaieb@23244: by (case_tac "d<0", simp_all) chaieb@23244: chaieb@23244: (* lcm a b is positive for positive a and b *) chaieb@23244: chaieb@23244: lemma lcm_pos: chaieb@23244: assumes mpos: "m > 0" chaieb@27568: and npos: "n>0" haftmann@27556: shows "lcm m n > 0" chaieb@23244: proof(rule ccontr, simp add: lcm_def gcd_zero) chaieb@27568: assume h:"m*n div gcd m n = 0" haftmann@27556: from mpos npos have "gcd m n \ 0" using gcd_zero by simp haftmann@27556: hence gcdp: "gcd m n > 0" by simp chaieb@23244: with h haftmann@27556: have "m*n < gcd m n" haftmann@27556: by (cases "m * n < gcd m n") (auto simp add: div_if[OF gcdp, where m="m*n"]) chaieb@23244: moreover haftmann@27556: have "gcd m n dvd m" by simp haftmann@27556: with mpos dvd_imp_le have t1:"gcd m n \ m" by simp chaieb@27568: with npos have t1:"gcd m n *n \ m*n" by simp haftmann@27556: have "gcd m n \ gcd m n*n" using npos by simp haftmann@27556: with t1 have "gcd m n \ m*n" by arith chaieb@23244: ultimately show "False" by simp chaieb@23244: qed chaieb@23244: haftmann@27556: lemma zlcm_pos: nipkow@23983: assumes anz: "a \ 0" nipkow@23983: and bnz: "b \ 0" haftmann@27556: shows "0 < zlcm a b" chaieb@23244: proof- chaieb@23244: let ?na = "nat (abs a)" chaieb@23244: let ?nb = "nat (abs b)" nipkow@23983: have nap: "?na >0" using anz by simp nipkow@23983: have nbp: "?nb >0" using bnz by simp haftmann@27556: have "0 < lcm ?na ?nb" by (rule lcm_pos[OF nap nbp]) haftmann@27556: thus ?thesis by (simp add: zlcm_def) chaieb@23244: qed chaieb@23244: haftmann@28562: lemma zgcd_code [code]: haftmann@27651: "zgcd k l = \if l = 0 then k else zgcd l (\k\ mod \l\)\" haftmann@27651: by (simp add: zgcd_def gcd.simps [of "nat \k\"] nat_mod_distrib) haftmann@27651: wenzelm@21256: end