haftmann@29197: (* Title: HOL/RealVector.thy haftmann@27552: Author: Brian Huffman huffman@20504: *) huffman@20504: huffman@20504: header {* Vector Spaces and Algebras over the Reals *} huffman@20504: huffman@20504: theory RealVector haftmann@29197: imports RealPow huffman@20504: begin huffman@20504: huffman@20504: subsection {* Locale for additive functions *} huffman@20504: huffman@20504: locale additive = huffman@20504: fixes f :: "'a::ab_group_add \ 'b::ab_group_add" huffman@20504: assumes add: "f (x + y) = f x + f y" huffman@27443: begin huffman@20504: huffman@27443: lemma zero: "f 0 = 0" huffman@20504: proof - huffman@20504: have "f 0 = f (0 + 0)" by simp huffman@20504: also have "\ = f 0 + f 0" by (rule add) huffman@20504: finally show "f 0 = 0" by simp huffman@20504: qed huffman@20504: huffman@27443: lemma minus: "f (- x) = - f x" huffman@20504: proof - huffman@20504: have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) huffman@20504: also have "\ = - f x + f x" by (simp add: zero) huffman@20504: finally show "f (- x) = - f x" by (rule add_right_imp_eq) huffman@20504: qed huffman@20504: huffman@27443: lemma diff: "f (x - y) = f x - f y" huffman@20504: by (simp add: diff_def add minus) huffman@20504: huffman@27443: lemma setsum: "f (setsum g A) = (\x\A. f (g x))" huffman@22942: apply (cases "finite A") huffman@22942: apply (induct set: finite) huffman@22942: apply (simp add: zero) huffman@22942: apply (simp add: add) huffman@22942: apply (simp add: zero) huffman@22942: done huffman@22942: huffman@27443: end huffman@20504: huffman@28029: subsection {* Vector spaces *} huffman@28029: huffman@28029: locale vector_space = huffman@28029: fixes scale :: "'a::field \ 'b::ab_group_add \ 'b" huffman@30070: assumes scale_right_distrib [algebra_simps]: huffman@30070: "scale a (x + y) = scale a x + scale a y" huffman@30070: and scale_left_distrib [algebra_simps]: huffman@30070: "scale (a + b) x = scale a x + scale b x" huffman@28029: and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x" huffman@28029: and scale_one [simp]: "scale 1 x = x" huffman@28029: begin huffman@28029: huffman@28029: lemma scale_left_commute: huffman@28029: "scale a (scale b x) = scale b (scale a x)" huffman@28029: by (simp add: mult_commute) huffman@28029: huffman@28029: lemma scale_zero_left [simp]: "scale 0 x = 0" huffman@28029: and scale_minus_left [simp]: "scale (- a) x = - (scale a x)" huffman@30070: and scale_left_diff_distrib [algebra_simps]: huffman@30070: "scale (a - b) x = scale a x - scale b x" huffman@28029: proof - ballarin@29229: interpret s: additive "\a. scale a x" haftmann@28823: proof qed (rule scale_left_distrib) huffman@28029: show "scale 0 x = 0" by (rule s.zero) huffman@28029: show "scale (- a) x = - (scale a x)" by (rule s.minus) huffman@28029: show "scale (a - b) x = scale a x - scale b x" by (rule s.diff) huffman@28029: qed huffman@28029: huffman@28029: lemma scale_zero_right [simp]: "scale a 0 = 0" huffman@28029: and scale_minus_right [simp]: "scale a (- x) = - (scale a x)" huffman@30070: and scale_right_diff_distrib [algebra_simps]: huffman@30070: "scale a (x - y) = scale a x - scale a y" huffman@28029: proof - ballarin@29229: interpret s: additive "\x. scale a x" haftmann@28823: proof qed (rule scale_right_distrib) huffman@28029: show "scale a 0 = 0" by (rule s.zero) huffman@28029: show "scale a (- x) = - (scale a x)" by (rule s.minus) huffman@28029: show "scale a (x - y) = scale a x - scale a y" by (rule s.diff) huffman@28029: qed huffman@28029: huffman@28029: lemma scale_eq_0_iff [simp]: huffman@28029: "scale a x = 0 \ a = 0 \ x = 0" huffman@28029: proof cases huffman@28029: assume "a = 0" thus ?thesis by simp huffman@28029: next huffman@28029: assume anz [simp]: "a \ 0" huffman@28029: { assume "scale a x = 0" huffman@28029: hence "scale (inverse a) (scale a x) = 0" by simp huffman@28029: hence "x = 0" by simp } huffman@28029: thus ?thesis by force huffman@28029: qed huffman@28029: huffman@28029: lemma scale_left_imp_eq: huffman@28029: "\a \ 0; scale a x = scale a y\ \ x = y" huffman@28029: proof - huffman@28029: assume nonzero: "a \ 0" huffman@28029: assume "scale a x = scale a y" huffman@28029: hence "scale a (x - y) = 0" huffman@28029: by (simp add: scale_right_diff_distrib) huffman@28029: hence "x - y = 0" by (simp add: nonzero) huffman@28029: thus "x = y" by (simp only: right_minus_eq) huffman@28029: qed huffman@28029: huffman@28029: lemma scale_right_imp_eq: huffman@28029: "\x \ 0; scale a x = scale b x\ \ a = b" huffman@28029: proof - huffman@28029: assume nonzero: "x \ 0" huffman@28029: assume "scale a x = scale b x" huffman@28029: hence "scale (a - b) x = 0" huffman@28029: by (simp add: scale_left_diff_distrib) huffman@28029: hence "a - b = 0" by (simp add: nonzero) huffman@28029: thus "a = b" by (simp only: right_minus_eq) huffman@28029: qed huffman@28029: huffman@28029: lemma scale_cancel_left: huffman@28029: "scale a x = scale a y \ x = y \ a = 0" huffman@28029: by (auto intro: scale_left_imp_eq) huffman@28029: huffman@28029: lemma scale_cancel_right: huffman@28029: "scale a x = scale b x \ a = b \ x = 0" huffman@28029: by (auto intro: scale_right_imp_eq) huffman@28029: huffman@28029: end huffman@28029: huffman@20504: subsection {* Real vector spaces *} huffman@20504: haftmann@29608: class scaleR = haftmann@25062: fixes scaleR :: "real \ 'a \ 'a" (infixr "*\<^sub>R" 75) haftmann@24748: begin huffman@20504: huffman@20763: abbreviation haftmann@25062: divideR :: "'a \ real \ 'a" (infixl "'/\<^sub>R" 70) haftmann@24748: where haftmann@25062: "x /\<^sub>R r == scaleR (inverse r) x" haftmann@24748: haftmann@24748: end haftmann@24748: haftmann@24588: class real_vector = scaleR + ab_group_add + haftmann@25062: assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y" haftmann@25062: and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x" huffman@30070: and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x" huffman@30070: and scaleR_one: "scaleR 1 x = x" huffman@20504: ballarin@29233: interpretation real_vector!: ballarin@29229: vector_space "scaleR :: real \ 'a \ 'a::real_vector" huffman@28009: apply unfold_locales huffman@28009: apply (rule scaleR_right_distrib) huffman@28009: apply (rule scaleR_left_distrib) huffman@28009: apply (rule scaleR_scaleR) huffman@28009: apply (rule scaleR_one) huffman@28009: done huffman@28009: huffman@28009: text {* Recover original theorem names *} huffman@28009: huffman@28009: lemmas scaleR_left_commute = real_vector.scale_left_commute huffman@28009: lemmas scaleR_zero_left = real_vector.scale_zero_left huffman@28009: lemmas scaleR_minus_left = real_vector.scale_minus_left huffman@28009: lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib huffman@28009: lemmas scaleR_zero_right = real_vector.scale_zero_right huffman@28009: lemmas scaleR_minus_right = real_vector.scale_minus_right huffman@28009: lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib huffman@28009: lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff huffman@28009: lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq huffman@28009: lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq huffman@28009: lemmas scaleR_cancel_left = real_vector.scale_cancel_left huffman@28009: lemmas scaleR_cancel_right = real_vector.scale_cancel_right huffman@28009: haftmann@24588: class real_algebra = real_vector + ring + haftmann@25062: assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" haftmann@25062: and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" huffman@20504: haftmann@24588: class real_algebra_1 = real_algebra + ring_1 huffman@20554: haftmann@24588: class real_div_algebra = real_algebra_1 + division_ring huffman@20584: haftmann@24588: class real_field = real_div_algebra + field huffman@20584: huffman@30069: instantiation real :: real_field huffman@30069: begin huffman@30069: huffman@30069: definition huffman@30069: real_scaleR_def [simp]: "scaleR a x = a * x" huffman@30069: huffman@30070: instance proof huffman@30070: qed (simp_all add: algebra_simps) huffman@20554: huffman@30069: end huffman@30069: ballarin@29233: interpretation scaleR_left!: additive "(\a. scaleR a x::'a::real_vector)" haftmann@28823: proof qed (rule scaleR_left_distrib) huffman@20504: ballarin@29233: interpretation scaleR_right!: additive "(\x. scaleR a x::'a::real_vector)" haftmann@28823: proof qed (rule scaleR_right_distrib) huffman@20504: huffman@20584: lemma nonzero_inverse_scaleR_distrib: huffman@21809: fixes x :: "'a::real_div_algebra" shows huffman@21809: "\a \ 0; x \ 0\ \ inverse (scaleR a x) = scaleR (inverse a) (inverse x)" huffman@20763: by (rule inverse_unique, simp) huffman@20584: huffman@20584: lemma inverse_scaleR_distrib: huffman@20584: fixes x :: "'a::{real_div_algebra,division_by_zero}" huffman@21809: shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" huffman@20584: apply (case_tac "a = 0", simp) huffman@20584: apply (case_tac "x = 0", simp) huffman@20584: apply (erule (1) nonzero_inverse_scaleR_distrib) huffman@20584: done huffman@20584: huffman@20554: huffman@20554: subsection {* Embedding of the Reals into any @{text real_algebra_1}: huffman@20554: @{term of_real} *} huffman@20554: huffman@20554: definition wenzelm@21404: of_real :: "real \ 'a::real_algebra_1" where huffman@21809: "of_real r = scaleR r 1" huffman@20554: huffman@21809: lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" huffman@20763: by (simp add: of_real_def) huffman@20763: huffman@20554: lemma of_real_0 [simp]: "of_real 0 = 0" huffman@20554: by (simp add: of_real_def) huffman@20554: huffman@20554: lemma of_real_1 [simp]: "of_real 1 = 1" huffman@20554: by (simp add: of_real_def) huffman@20554: huffman@20554: lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" huffman@20554: by (simp add: of_real_def scaleR_left_distrib) huffman@20554: huffman@20554: lemma of_real_minus [simp]: "of_real (- x) = - of_real x" huffman@20554: by (simp add: of_real_def) huffman@20554: huffman@20554: lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" huffman@20554: by (simp add: of_real_def scaleR_left_diff_distrib) huffman@20554: huffman@20554: lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" huffman@20763: by (simp add: of_real_def mult_commute) huffman@20554: huffman@20584: lemma nonzero_of_real_inverse: huffman@20584: "x \ 0 \ of_real (inverse x) = huffman@20584: inverse (of_real x :: 'a::real_div_algebra)" huffman@20584: by (simp add: of_real_def nonzero_inverse_scaleR_distrib) huffman@20584: huffman@20584: lemma of_real_inverse [simp]: huffman@20584: "of_real (inverse x) = huffman@20584: inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})" huffman@20584: by (simp add: of_real_def inverse_scaleR_distrib) huffman@20584: huffman@20584: lemma nonzero_of_real_divide: huffman@20584: "y \ 0 \ of_real (x / y) = huffman@20584: (of_real x / of_real y :: 'a::real_field)" huffman@20584: by (simp add: divide_inverse nonzero_of_real_inverse) huffman@20722: huffman@20722: lemma of_real_divide [simp]: huffman@20584: "of_real (x / y) = huffman@20584: (of_real x / of_real y :: 'a::{real_field,division_by_zero})" huffman@20584: by (simp add: divide_inverse) huffman@20584: huffman@20722: lemma of_real_power [simp]: huffman@20722: "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n" huffman@30273: by (induct n) simp_all huffman@20722: huffman@20554: lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" huffman@20554: by (simp add: of_real_def scaleR_cancel_right) huffman@20554: huffman@20584: lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] huffman@20554: huffman@20554: lemma of_real_eq_id [simp]: "of_real = (id :: real \ real)" huffman@20554: proof huffman@20554: fix r huffman@20554: show "of_real r = id r" huffman@22973: by (simp add: of_real_def) huffman@20554: qed huffman@20554: huffman@20554: text{*Collapse nested embeddings*} huffman@20554: lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" wenzelm@20772: by (induct n) auto huffman@20554: huffman@20554: lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" huffman@20554: by (cases z rule: int_diff_cases, simp) huffman@20554: huffman@20554: lemma of_real_number_of_eq: huffman@20554: "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})" huffman@20554: by (simp add: number_of_eq) huffman@20554: huffman@22912: text{*Every real algebra has characteristic zero*} huffman@22912: instance real_algebra_1 < ring_char_0 huffman@22912: proof huffman@23282: fix m n :: nat huffman@23282: have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)" huffman@23282: by (simp only: of_real_eq_iff of_nat_eq_iff) huffman@23282: thus "(of_nat m = (of_nat n::'a)) = (m = n)" huffman@23282: by (simp only: of_real_of_nat_eq) huffman@22912: qed huffman@22912: huffman@27553: instance real_field < field_char_0 .. huffman@27553: huffman@20554: huffman@20554: subsection {* The Set of Real Numbers *} huffman@20554: wenzelm@20772: definition wenzelm@21404: Reals :: "'a::real_algebra_1 set" where huffman@30070: [code del]: "Reals = range of_real" huffman@20554: wenzelm@21210: notation (xsymbols) huffman@20554: Reals ("\") huffman@20554: huffman@21809: lemma Reals_of_real [simp]: "of_real r \ Reals" huffman@20554: by (simp add: Reals_def) huffman@20554: huffman@21809: lemma Reals_of_int [simp]: "of_int z \ Reals" huffman@21809: by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) huffman@20718: huffman@21809: lemma Reals_of_nat [simp]: "of_nat n \ Reals" huffman@21809: by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) huffman@21809: huffman@21809: lemma Reals_number_of [simp]: huffman@21809: "(number_of w::'a::{number_ring,real_algebra_1}) \ Reals" huffman@21809: by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) huffman@20718: huffman@20554: lemma Reals_0 [simp]: "0 \ Reals" huffman@20554: apply (unfold Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_0 [symmetric]) huffman@20554: done huffman@20554: huffman@20554: lemma Reals_1 [simp]: "1 \ Reals" huffman@20554: apply (unfold Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_1 [symmetric]) huffman@20554: done huffman@20554: huffman@20584: lemma Reals_add [simp]: "\a \ Reals; b \ Reals\ \ a + b \ Reals" huffman@20554: apply (auto simp add: Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_add [symmetric]) huffman@20554: done huffman@20554: huffman@20584: lemma Reals_minus [simp]: "a \ Reals \ - a \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_minus [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_diff [simp]: "\a \ Reals; b \ Reals\ \ a - b \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_diff [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_mult [simp]: "\a \ Reals; b \ Reals\ \ a * b \ Reals" huffman@20554: apply (auto simp add: Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_mult [symmetric]) huffman@20554: done huffman@20554: huffman@20584: lemma nonzero_Reals_inverse: huffman@20584: fixes a :: "'a::real_div_algebra" huffman@20584: shows "\a \ Reals; a \ 0\ \ inverse a \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (erule nonzero_of_real_inverse [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_inverse [simp]: huffman@20584: fixes a :: "'a::{real_div_algebra,division_by_zero}" huffman@20584: shows "a \ Reals \ inverse a \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_inverse [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma nonzero_Reals_divide: huffman@20584: fixes a b :: "'a::real_field" huffman@20584: shows "\a \ Reals; b \ Reals; b \ 0\ \ a / b \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (erule nonzero_of_real_divide [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_divide [simp]: huffman@20584: fixes a b :: "'a::{real_field,division_by_zero}" huffman@20584: shows "\a \ Reals; b \ Reals\ \ a / b \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_divide [symmetric]) huffman@20584: done huffman@20584: huffman@20722: lemma Reals_power [simp]: huffman@20722: fixes a :: "'a::{real_algebra_1,recpower}" huffman@20722: shows "a \ Reals \ a ^ n \ Reals" huffman@20722: apply (auto simp add: Reals_def) huffman@20722: apply (rule range_eqI) huffman@20722: apply (rule of_real_power [symmetric]) huffman@20722: done huffman@20722: huffman@20554: lemma Reals_cases [cases set: Reals]: huffman@20554: assumes "q \ \" huffman@20554: obtains (of_real) r where "q = of_real r" huffman@20554: unfolding Reals_def huffman@20554: proof - huffman@20554: from `q \ \` have "q \ range of_real" unfolding Reals_def . huffman@20554: then obtain r where "q = of_real r" .. huffman@20554: then show thesis .. huffman@20554: qed huffman@20554: huffman@20554: lemma Reals_induct [case_names of_real, induct set: Reals]: huffman@20554: "q \ \ \ (\r. P (of_real r)) \ P q" huffman@20554: by (rule Reals_cases) auto huffman@20554: huffman@20504: huffman@20504: subsection {* Real normed vector spaces *} huffman@20504: haftmann@29608: class norm = huffman@22636: fixes norm :: "'a \ real" huffman@20504: huffman@24520: class sgn_div_norm = scaleR + norm + sgn + haftmann@25062: assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" nipkow@24506: haftmann@24588: class real_normed_vector = real_vector + sgn_div_norm + haftmann@24588: assumes norm_ge_zero [simp]: "0 \ norm x" haftmann@25062: and norm_eq_zero [simp]: "norm x = 0 \ x = 0" haftmann@25062: and norm_triangle_ineq: "norm (x + y) \ norm x + norm y" haftmann@24588: and norm_scaleR: "norm (scaleR a x) = \a\ * norm x" huffman@20504: haftmann@24588: class real_normed_algebra = real_algebra + real_normed_vector + haftmann@25062: assumes norm_mult_ineq: "norm (x * y) \ norm x * norm y" huffman@20504: haftmann@24588: class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + haftmann@25062: assumes norm_one [simp]: "norm 1 = 1" huffman@22852: haftmann@24588: class real_normed_div_algebra = real_div_algebra + real_normed_vector + haftmann@25062: assumes norm_mult: "norm (x * y) = norm x * norm y" huffman@20504: haftmann@24588: class real_normed_field = real_field + real_normed_div_algebra huffman@20584: huffman@22852: instance real_normed_div_algebra < real_normed_algebra_1 huffman@20554: proof huffman@20554: fix x y :: 'a huffman@20554: show "norm (x * y) \ norm x * norm y" huffman@20554: by (simp add: norm_mult) huffman@22852: next huffman@22852: have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" huffman@22852: by (rule norm_mult) huffman@22852: thus "norm (1::'a) = 1" by simp huffman@20554: qed huffman@20554: huffman@30069: instantiation real :: real_normed_field huffman@30069: begin huffman@30069: huffman@30069: definition huffman@30069: real_norm_def [simp]: "norm r = \r\" huffman@30069: huffman@30069: instance huffman@22852: apply (intro_classes, unfold real_norm_def real_scaleR_def) nipkow@24506: apply (simp add: real_sgn_def) huffman@20554: apply (rule abs_ge_zero) huffman@20554: apply (rule abs_eq_0) huffman@20554: apply (rule abs_triangle_ineq) huffman@22852: apply (rule abs_mult) huffman@20554: apply (rule abs_mult) huffman@20554: done huffman@20504: huffman@30069: end huffman@30069: huffman@22852: lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" huffman@20504: by simp huffman@20504: huffman@22852: lemma zero_less_norm_iff [simp]: huffman@22852: fixes x :: "'a::real_normed_vector" huffman@22852: shows "(0 < norm x) = (x \ 0)" huffman@20504: by (simp add: order_less_le) huffman@20504: huffman@22852: lemma norm_not_less_zero [simp]: huffman@22852: fixes x :: "'a::real_normed_vector" huffman@22852: shows "\ norm x < 0" huffman@20828: by (simp add: linorder_not_less) huffman@20828: huffman@22852: lemma norm_le_zero_iff [simp]: huffman@22852: fixes x :: "'a::real_normed_vector" huffman@22852: shows "(norm x \ 0) = (x = 0)" huffman@20828: by (simp add: order_le_less) huffman@20828: huffman@20504: lemma norm_minus_cancel [simp]: huffman@20584: fixes x :: "'a::real_normed_vector" huffman@20584: shows "norm (- x) = norm x" huffman@20504: proof - huffman@21809: have "norm (- x) = norm (scaleR (- 1) x)" huffman@20504: by (simp only: scaleR_minus_left scaleR_one) huffman@20533: also have "\ = \- 1\ * norm x" huffman@20504: by (rule norm_scaleR) huffman@20504: finally show ?thesis by simp huffman@20504: qed huffman@20504: huffman@20504: lemma norm_minus_commute: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20584: shows "norm (a - b) = norm (b - a)" huffman@20504: proof - huffman@22898: have "norm (- (b - a)) = norm (b - a)" huffman@22898: by (rule norm_minus_cancel) huffman@22898: thus ?thesis by simp huffman@20504: qed huffman@20504: huffman@20504: lemma norm_triangle_ineq2: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20533: shows "norm a - norm b \ norm (a - b)" huffman@20504: proof - huffman@20533: have "norm (a - b + b) \ norm (a - b) + norm b" huffman@20504: by (rule norm_triangle_ineq) huffman@22898: thus ?thesis by simp huffman@20504: qed huffman@20504: huffman@20584: lemma norm_triangle_ineq3: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20584: shows "\norm a - norm b\ \ norm (a - b)" huffman@20584: apply (subst abs_le_iff) huffman@20584: apply auto huffman@20584: apply (rule norm_triangle_ineq2) huffman@20584: apply (subst norm_minus_commute) huffman@20584: apply (rule norm_triangle_ineq2) huffman@20584: done huffman@20584: huffman@20504: lemma norm_triangle_ineq4: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20533: shows "norm (a - b) \ norm a + norm b" huffman@20504: proof - huffman@22898: have "norm (a + - b) \ norm a + norm (- b)" huffman@20504: by (rule norm_triangle_ineq) huffman@22898: thus ?thesis huffman@22898: by (simp only: diff_minus norm_minus_cancel) huffman@22898: qed huffman@22898: huffman@22898: lemma norm_diff_ineq: huffman@22898: fixes a b :: "'a::real_normed_vector" huffman@22898: shows "norm a - norm b \ norm (a + b)" huffman@22898: proof - huffman@22898: have "norm a - norm (- b) \ norm (a - - b)" huffman@22898: by (rule norm_triangle_ineq2) huffman@22898: thus ?thesis by simp huffman@20504: qed huffman@20504: huffman@20551: lemma norm_diff_triangle_ineq: huffman@20551: fixes a b c d :: "'a::real_normed_vector" huffman@20551: shows "norm ((a + b) - (c + d)) \ norm (a - c) + norm (b - d)" huffman@20551: proof - huffman@20551: have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" huffman@20551: by (simp add: diff_minus add_ac) huffman@20551: also have "\ \ norm (a - c) + norm (b - d)" huffman@20551: by (rule norm_triangle_ineq) huffman@20551: finally show ?thesis . huffman@20551: qed huffman@20551: huffman@22857: lemma abs_norm_cancel [simp]: huffman@22857: fixes a :: "'a::real_normed_vector" huffman@22857: shows "\norm a\ = norm a" huffman@22857: by (rule abs_of_nonneg [OF norm_ge_zero]) huffman@22857: huffman@22880: lemma norm_add_less: huffman@22880: fixes x y :: "'a::real_normed_vector" huffman@22880: shows "\norm x < r; norm y < s\ \ norm (x + y) < r + s" huffman@22880: by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) huffman@22880: huffman@22880: lemma norm_mult_less: huffman@22880: fixes x y :: "'a::real_normed_algebra" huffman@22880: shows "\norm x < r; norm y < s\ \ norm (x * y) < r * s" huffman@22880: apply (rule order_le_less_trans [OF norm_mult_ineq]) huffman@22880: apply (simp add: mult_strict_mono') huffman@22880: done huffman@22880: huffman@22857: lemma norm_of_real [simp]: huffman@22857: "norm (of_real r :: 'a::real_normed_algebra_1) = \r\" huffman@22852: unfolding of_real_def by (simp add: norm_scaleR) huffman@20560: huffman@22876: lemma norm_number_of [simp]: huffman@22876: "norm (number_of w::'a::{number_ring,real_normed_algebra_1}) huffman@22876: = \number_of w\" huffman@22876: by (subst of_real_number_of_eq [symmetric], rule norm_of_real) huffman@22876: huffman@22876: lemma norm_of_int [simp]: huffman@22876: "norm (of_int z::'a::real_normed_algebra_1) = \of_int z\" huffman@22876: by (subst of_real_of_int_eq [symmetric], rule norm_of_real) huffman@22876: huffman@22876: lemma norm_of_nat [simp]: huffman@22876: "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" huffman@22876: apply (subst of_real_of_nat_eq [symmetric]) huffman@22876: apply (subst norm_of_real, simp) huffman@22876: done huffman@22876: huffman@20504: lemma nonzero_norm_inverse: huffman@20504: fixes a :: "'a::real_normed_div_algebra" huffman@20533: shows "a \ 0 \ norm (inverse a) = inverse (norm a)" huffman@20504: apply (rule inverse_unique [symmetric]) huffman@20504: apply (simp add: norm_mult [symmetric]) huffman@20504: done huffman@20504: huffman@20504: lemma norm_inverse: huffman@20504: fixes a :: "'a::{real_normed_div_algebra,division_by_zero}" huffman@20533: shows "norm (inverse a) = inverse (norm a)" huffman@20504: apply (case_tac "a = 0", simp) huffman@20504: apply (erule nonzero_norm_inverse) huffman@20504: done huffman@20504: huffman@20584: lemma nonzero_norm_divide: huffman@20584: fixes a b :: "'a::real_normed_field" huffman@20584: shows "b \ 0 \ norm (a / b) = norm a / norm b" huffman@20584: by (simp add: divide_inverse norm_mult nonzero_norm_inverse) huffman@20584: huffman@20584: lemma norm_divide: huffman@20584: fixes a b :: "'a::{real_normed_field,division_by_zero}" huffman@20584: shows "norm (a / b) = norm a / norm b" huffman@20584: by (simp add: divide_inverse norm_mult norm_inverse) huffman@20584: huffman@22852: lemma norm_power_ineq: huffman@22852: fixes x :: "'a::{real_normed_algebra_1,recpower}" huffman@22852: shows "norm (x ^ n) \ norm x ^ n" huffman@22852: proof (induct n) huffman@22852: case 0 show "norm (x ^ 0) \ norm x ^ 0" by simp huffman@22852: next huffman@22852: case (Suc n) huffman@22852: have "norm (x * x ^ n) \ norm x * norm (x ^ n)" huffman@22852: by (rule norm_mult_ineq) huffman@22852: also from Suc have "\ \ norm x * norm x ^ n" huffman@22852: using norm_ge_zero by (rule mult_left_mono) huffman@22852: finally show "norm (x ^ Suc n) \ norm x ^ Suc n" huffman@30273: by simp huffman@22852: qed huffman@22852: huffman@20684: lemma norm_power: huffman@20684: fixes x :: "'a::{real_normed_div_algebra,recpower}" huffman@20684: shows "norm (x ^ n) = norm x ^ n" huffman@30273: by (induct n) (simp_all add: norm_mult) huffman@20684: huffman@22442: huffman@22972: subsection {* Sign function *} huffman@22972: nipkow@24506: lemma norm_sgn: nipkow@24506: "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" nipkow@24506: by (simp add: sgn_div_norm norm_scaleR) huffman@22972: nipkow@24506: lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" nipkow@24506: by (simp add: sgn_div_norm) huffman@22972: nipkow@24506: lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" nipkow@24506: by (simp add: sgn_div_norm) huffman@22972: nipkow@24506: lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" nipkow@24506: by (simp add: sgn_div_norm) huffman@22972: nipkow@24506: lemma sgn_scaleR: nipkow@24506: "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" nipkow@24506: by (simp add: sgn_div_norm norm_scaleR mult_ac) huffman@22973: huffman@22972: lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" nipkow@24506: by (simp add: sgn_div_norm) huffman@22972: huffman@22972: lemma sgn_of_real: huffman@22972: "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" huffman@22972: unfolding of_real_def by (simp only: sgn_scaleR sgn_one) huffman@22972: huffman@22973: lemma sgn_mult: huffman@22973: fixes x y :: "'a::real_normed_div_algebra" huffman@22973: shows "sgn (x * y) = sgn x * sgn y" nipkow@24506: by (simp add: sgn_div_norm norm_mult mult_commute) huffman@22973: huffman@22972: lemma real_sgn_eq: "sgn (x::real) = x / \x\" nipkow@24506: by (simp add: sgn_div_norm divide_inverse) huffman@22972: huffman@22972: lemma real_sgn_pos: "0 < (x::real) \ sgn x = 1" huffman@22972: unfolding real_sgn_eq by simp huffman@22972: huffman@22972: lemma real_sgn_neg: "(x::real) < 0 \ sgn x = -1" huffman@22972: unfolding real_sgn_eq by simp huffman@22972: huffman@22972: huffman@22442: subsection {* Bounded Linear and Bilinear Operators *} huffman@22442: huffman@22442: locale bounded_linear = additive + huffman@22442: constrains f :: "'a::real_normed_vector \ 'b::real_normed_vector" huffman@22442: assumes scaleR: "f (scaleR r x) = scaleR r (f x)" huffman@22442: assumes bounded: "\K. \x. norm (f x) \ norm x * K" huffman@27443: begin huffman@22442: huffman@27443: lemma pos_bounded: huffman@22442: "\K>0. \x. norm (f x) \ norm x * K" huffman@22442: proof - huffman@22442: obtain K where K: "\x. norm (f x) \ norm x * K" huffman@22442: using bounded by fast huffman@22442: show ?thesis huffman@22442: proof (intro exI impI conjI allI) huffman@22442: show "0 < max 1 K" huffman@22442: by (rule order_less_le_trans [OF zero_less_one le_maxI1]) huffman@22442: next huffman@22442: fix x huffman@22442: have "norm (f x) \ norm x * K" using K . huffman@22442: also have "\ \ norm x * max 1 K" huffman@22442: by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) huffman@22442: finally show "norm (f x) \ norm x * max 1 K" . huffman@22442: qed huffman@22442: qed huffman@22442: huffman@27443: lemma nonneg_bounded: huffman@22442: "\K\0. \x. norm (f x) \ norm x * K" huffman@22442: proof - huffman@22442: from pos_bounded huffman@22442: show ?thesis by (auto intro: order_less_imp_le) huffman@22442: qed huffman@22442: huffman@27443: end huffman@27443: huffman@22442: locale bounded_bilinear = huffman@22442: fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] huffman@22442: \ 'c::real_normed_vector" huffman@22442: (infixl "**" 70) huffman@22442: assumes add_left: "prod (a + a') b = prod a b + prod a' b" huffman@22442: assumes add_right: "prod a (b + b') = prod a b + prod a b'" huffman@22442: assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" huffman@22442: assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" huffman@22442: assumes bounded: "\K. \a b. norm (prod a b) \ norm a * norm b * K" huffman@27443: begin huffman@22442: huffman@27443: lemma pos_bounded: huffman@22442: "\K>0. \a b. norm (a ** b) \ norm a * norm b * K" huffman@22442: apply (cut_tac bounded, erule exE) huffman@22442: apply (rule_tac x="max 1 K" in exI, safe) huffman@22442: apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) huffman@22442: apply (drule spec, drule spec, erule order_trans) huffman@22442: apply (rule mult_left_mono [OF le_maxI2]) huffman@22442: apply (intro mult_nonneg_nonneg norm_ge_zero) huffman@22442: done huffman@22442: huffman@27443: lemma nonneg_bounded: huffman@22442: "\K\0. \a b. norm (a ** b) \ norm a * norm b * K" huffman@22442: proof - huffman@22442: from pos_bounded huffman@22442: show ?thesis by (auto intro: order_less_imp_le) huffman@22442: qed huffman@22442: huffman@27443: lemma additive_right: "additive (\b. prod a b)" huffman@22442: by (rule additive.intro, rule add_right) huffman@22442: huffman@27443: lemma additive_left: "additive (\a. prod a b)" huffman@22442: by (rule additive.intro, rule add_left) huffman@22442: huffman@27443: lemma zero_left: "prod 0 b = 0" huffman@22442: by (rule additive.zero [OF additive_left]) huffman@22442: huffman@27443: lemma zero_right: "prod a 0 = 0" huffman@22442: by (rule additive.zero [OF additive_right]) huffman@22442: huffman@27443: lemma minus_left: "prod (- a) b = - prod a b" huffman@22442: by (rule additive.minus [OF additive_left]) huffman@22442: huffman@27443: lemma minus_right: "prod a (- b) = - prod a b" huffman@22442: by (rule additive.minus [OF additive_right]) huffman@22442: huffman@27443: lemma diff_left: huffman@22442: "prod (a - a') b = prod a b - prod a' b" huffman@22442: by (rule additive.diff [OF additive_left]) huffman@22442: huffman@27443: lemma diff_right: huffman@22442: "prod a (b - b') = prod a b - prod a b'" huffman@22442: by (rule additive.diff [OF additive_right]) huffman@22442: huffman@27443: lemma bounded_linear_left: huffman@22442: "bounded_linear (\a. a ** b)" huffman@22442: apply (unfold_locales) huffman@22442: apply (rule add_left) huffman@22442: apply (rule scaleR_left) huffman@22442: apply (cut_tac bounded, safe) huffman@22442: apply (rule_tac x="norm b * K" in exI) huffman@22442: apply (simp add: mult_ac) huffman@22442: done huffman@22442: huffman@27443: lemma bounded_linear_right: huffman@22442: "bounded_linear (\b. a ** b)" huffman@22442: apply (unfold_locales) huffman@22442: apply (rule add_right) huffman@22442: apply (rule scaleR_right) huffman@22442: apply (cut_tac bounded, safe) huffman@22442: apply (rule_tac x="norm a * K" in exI) huffman@22442: apply (simp add: mult_ac) huffman@22442: done huffman@22442: huffman@27443: lemma prod_diff_prod: huffman@22442: "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" huffman@22442: by (simp add: diff_left diff_right) huffman@22442: huffman@27443: end huffman@27443: ballarin@29233: interpretation mult!: ballarin@29229: bounded_bilinear "op * :: 'a \ 'a \ 'a::real_normed_algebra" huffman@22442: apply (rule bounded_bilinear.intro) huffman@22442: apply (rule left_distrib) huffman@22442: apply (rule right_distrib) huffman@22442: apply (rule mult_scaleR_left) huffman@22442: apply (rule mult_scaleR_right) huffman@22442: apply (rule_tac x="1" in exI) huffman@22442: apply (simp add: norm_mult_ineq) huffman@22442: done huffman@22442: ballarin@29233: interpretation mult_left!: ballarin@29229: bounded_linear "(\x::'a::real_normed_algebra. x * y)" huffman@23127: by (rule mult.bounded_linear_left) huffman@22442: ballarin@29233: interpretation mult_right!: ballarin@29229: bounded_linear "(\y::'a::real_normed_algebra. x * y)" huffman@23127: by (rule mult.bounded_linear_right) huffman@23127: ballarin@29233: interpretation divide!: ballarin@29229: bounded_linear "(\x::'a::real_normed_field. x / y)" huffman@23127: unfolding divide_inverse by (rule mult.bounded_linear_left) huffman@23120: ballarin@29233: interpretation scaleR!: bounded_bilinear "scaleR" huffman@22442: apply (rule bounded_bilinear.intro) huffman@22442: apply (rule scaleR_left_distrib) huffman@22442: apply (rule scaleR_right_distrib) huffman@22973: apply simp huffman@22442: apply (rule scaleR_left_commute) huffman@22442: apply (rule_tac x="1" in exI) huffman@22442: apply (simp add: norm_scaleR) huffman@22442: done huffman@22442: ballarin@29233: interpretation scaleR_left!: bounded_linear "\r. scaleR r x" huffman@23127: by (rule scaleR.bounded_linear_left) huffman@23127: ballarin@29233: interpretation scaleR_right!: bounded_linear "\x. scaleR r x" huffman@23127: by (rule scaleR.bounded_linear_right) huffman@23127: ballarin@29233: interpretation of_real!: bounded_linear "\r. of_real r" huffman@23127: unfolding of_real_def by (rule scaleR.bounded_linear_left) huffman@22625: huffman@20504: end