avigad@16908: (* Title: SetsAndFunctions.thy avigad@16908: Author: Jeremy Avigad and Kevin Donnelly avigad@16908: *) avigad@16908: avigad@16908: header {* Operations on sets and functions *} avigad@16908: avigad@16908: theory SetsAndFunctions avigad@16908: imports Main avigad@16908: begin avigad@16908: avigad@16908: text {* avigad@16908: This library lifts operations like addition and muliplication to sets and avigad@16908: functions of appropriate types. It was designed to support asymptotic avigad@16908: calculations. See the comments at the top of BigO.thy avigad@16908: *} avigad@16908: avigad@16908: subsection {* Basic definitions *} avigad@16908: avigad@16908: instance set :: (plus)plus avigad@16908: by intro_classes avigad@16908: avigad@16908: instance fun :: (type,plus)plus avigad@16908: by intro_classes avigad@16908: avigad@16908: defs (overloaded) avigad@16908: func_plus: "f + g == (%x. f x + g x)" avigad@16908: set_plus: "A + B == {c. EX a:A. EX b:B. c = a + b}" avigad@16908: avigad@16908: instance set :: (times)times avigad@16908: by intro_classes avigad@16908: avigad@16908: instance fun :: (type,times)times avigad@16908: by intro_classes avigad@16908: avigad@16908: defs (overloaded) avigad@16908: func_times: "f * g == (%x. f x * g x)" avigad@16908: set_times:"A * B == {c. EX a:A. EX b:B. c = a * b}" avigad@16908: avigad@16908: instance fun :: (type,minus)minus avigad@16908: by intro_classes avigad@16908: avigad@16908: defs (overloaded) avigad@16908: func_minus: "- f == (%x. - f x)" avigad@16908: func_diff: "f - g == %x. f x - g x" avigad@16908: avigad@16908: instance fun :: (type,zero)zero avigad@16908: by intro_classes avigad@16908: avigad@16908: instance set :: (zero)zero avigad@16908: by(intro_classes) avigad@16908: avigad@16908: defs (overloaded) avigad@16908: func_zero: "0::(('a::type) => ('b::zero)) == %x. 0" avigad@16908: set_zero: "0::('a::zero)set == {0}" avigad@16908: avigad@16908: instance fun :: (type,one)one avigad@16908: by intro_classes avigad@16908: avigad@16908: instance set :: (one)one avigad@16908: by intro_classes avigad@16908: avigad@16908: defs (overloaded) avigad@16908: func_one: "1::(('a::type) => ('b::one)) == %x. 1" avigad@16908: set_one: "1::('a::one)set == {1}" avigad@16908: avigad@16908: constdefs avigad@16908: elt_set_plus :: "'a::plus => 'a set => 'a set" (infixl "+o" 70) avigad@16908: "a +o B == {c. EX b:B. c = a + b}" avigad@16908: avigad@16908: elt_set_times :: "'a::times => 'a set => 'a set" (infixl "*o" 80) avigad@16908: "a *o B == {c. EX b:B. c = a * b}" avigad@16908: avigad@16908: syntax avigad@16908: "elt_set_eq" :: "'a => 'a set => bool" (infix "=o" 50) avigad@16908: avigad@16908: translations avigad@16908: "x =o A" => "x : A" avigad@16908: avigad@16908: instance fun :: (type,semigroup_add)semigroup_add avigad@16908: apply intro_classes avigad@16908: apply (auto simp add: func_plus add_assoc) avigad@16908: done avigad@16908: avigad@16908: instance fun :: (type,comm_monoid_add)comm_monoid_add avigad@16908: apply intro_classes avigad@16908: apply (auto simp add: func_zero func_plus add_ac) avigad@16908: done avigad@16908: avigad@16908: instance fun :: (type,ab_group_add)ab_group_add avigad@16908: apply intro_classes avigad@16908: apply (simp add: func_minus func_plus func_zero) avigad@16908: apply (simp add: func_minus func_plus func_diff diff_minus) avigad@16908: done avigad@16908: avigad@16908: instance fun :: (type,semigroup_mult)semigroup_mult avigad@16908: apply intro_classes avigad@16908: apply (auto simp add: func_times mult_assoc) avigad@16908: done avigad@16908: avigad@16908: instance fun :: (type,comm_monoid_mult)comm_monoid_mult avigad@16908: apply intro_classes avigad@16908: apply (auto simp add: func_one func_times mult_ac) avigad@16908: done avigad@16908: avigad@16908: instance fun :: (type,comm_ring_1)comm_ring_1 avigad@16908: apply intro_classes avigad@16908: apply (auto simp add: func_plus func_times func_minus func_diff ext avigad@16908: func_one func_zero ring_eq_simps) avigad@16908: apply (drule fun_cong) avigad@16908: apply simp avigad@16908: done avigad@16908: avigad@16908: instance set :: (semigroup_add)semigroup_add avigad@16908: apply intro_classes avigad@16908: apply (unfold set_plus) avigad@16908: apply (force simp add: add_assoc) avigad@16908: done avigad@16908: avigad@16908: instance set :: (semigroup_mult)semigroup_mult avigad@16908: apply intro_classes avigad@16908: apply (unfold set_times) avigad@16908: apply (force simp add: mult_assoc) avigad@16908: done avigad@16908: avigad@16908: instance set :: (comm_monoid_add)comm_monoid_add avigad@16908: apply intro_classes avigad@16908: apply (unfold set_plus) avigad@16908: apply (force simp add: add_ac) avigad@16908: apply (unfold set_zero) avigad@16908: apply force avigad@16908: done avigad@16908: avigad@16908: instance set :: (comm_monoid_mult)comm_monoid_mult avigad@16908: apply intro_classes avigad@16908: apply (unfold set_times) avigad@16908: apply (force simp add: mult_ac) avigad@16908: apply (unfold set_one) avigad@16908: apply force avigad@16908: done avigad@16908: avigad@16908: subsection {* Basic properties *} avigad@16908: avigad@16908: lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C + D" avigad@16908: by (auto simp add: set_plus) avigad@16908: avigad@16908: lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C" avigad@16908: by (auto simp add: elt_set_plus_def) avigad@16908: avigad@16908: lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) + avigad@16908: (b +o D) = (a + b) +o (C + D)" avigad@16908: apply (auto simp add: elt_set_plus_def set_plus add_ac) avigad@16908: apply (rule_tac x = "ba + bb" in exI) avigad@16908: apply (auto simp add: add_ac) avigad@16908: apply (rule_tac x = "aa + a" in exI) avigad@16908: apply (auto simp add: add_ac) avigad@16908: done avigad@16908: avigad@16908: lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) = avigad@16908: (a + b) +o C" avigad@16908: by (auto simp add: elt_set_plus_def add_assoc) avigad@16908: avigad@16908: lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) + C = avigad@16908: a +o (B + C)" avigad@16908: apply (auto simp add: elt_set_plus_def set_plus) avigad@16908: apply (blast intro: add_ac) avigad@16908: apply (rule_tac x = "a + aa" in exI) avigad@16908: apply (rule conjI) avigad@16908: apply (rule_tac x = "aa" in bexI) avigad@16908: apply auto avigad@16908: apply (rule_tac x = "ba" in bexI) avigad@16908: apply (auto simp add: add_ac) avigad@16908: done avigad@16908: avigad@16908: theorem set_plus_rearrange4: "C + ((a::'a::comm_monoid_add) +o D) = avigad@16908: a +o (C + D)" avigad@16908: apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus add_ac) avigad@16908: apply (rule_tac x = "aa + ba" in exI) avigad@16908: apply (auto simp add: add_ac) avigad@16908: done avigad@16908: avigad@16908: theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2 avigad@16908: set_plus_rearrange3 set_plus_rearrange4 avigad@16908: avigad@16908: lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D" avigad@16908: by (auto simp add: elt_set_plus_def) avigad@16908: avigad@16908: lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==> avigad@16908: C + E <= D + F" avigad@16908: by (auto simp add: set_plus) avigad@16908: avigad@16908: lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C + D" avigad@16908: by (auto simp add: elt_set_plus_def set_plus) avigad@16908: avigad@16908: lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==> avigad@16908: a +o D <= D + C" avigad@16908: by (auto simp add: elt_set_plus_def set_plus add_ac) avigad@16908: avigad@16908: lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C + D" avigad@16908: apply (subgoal_tac "a +o B <= a +o D") avigad@16908: apply (erule order_trans) avigad@16908: apply (erule set_plus_mono3) avigad@16908: apply (erule set_plus_mono) avigad@16908: done avigad@16908: avigad@16908: lemma set_plus_mono_b: "C <= D ==> x : a +o C avigad@16908: ==> x : a +o D" avigad@16908: apply (frule set_plus_mono) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C + E ==> avigad@16908: x : D + F" avigad@16908: apply (frule set_plus_mono2) avigad@16908: prefer 2 avigad@16908: apply force avigad@16908: apply assumption avigad@16908: done avigad@16908: avigad@16908: lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C + D" avigad@16908: apply (frule set_plus_mono3) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==> avigad@16908: x : a +o D ==> x : D + C" avigad@16908: apply (frule set_plus_mono4) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C" avigad@16908: by (auto simp add: elt_set_plus_def) avigad@16908: avigad@16908: lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A + B" avigad@16908: apply (auto intro!: subsetI simp add: set_plus) avigad@16908: apply (rule_tac x = 0 in bexI) avigad@16908: apply (rule_tac x = x in bexI) avigad@16908: apply (auto simp add: add_ac) avigad@16908: done avigad@16908: avigad@16908: lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C" avigad@16908: by (auto simp add: elt_set_plus_def add_ac diff_minus) avigad@16908: avigad@16908: lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C" avigad@16908: apply (auto simp add: elt_set_plus_def add_ac diff_minus) avigad@16908: apply (subgoal_tac "a = (a + - b) + b") avigad@16908: apply (rule bexI, assumption, assumption) avigad@16908: apply (auto simp add: add_ac) avigad@16908: done avigad@16908: avigad@16908: lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)" avigad@16908: by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus, avigad@16908: assumption) avigad@16908: avigad@16908: lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C * D" avigad@16908: by (auto simp add: set_times) avigad@16908: avigad@16908: lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C" avigad@16908: by (auto simp add: elt_set_times_def) avigad@16908: avigad@16908: lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) * avigad@16908: (b *o D) = (a * b) *o (C * D)" avigad@16908: apply (auto simp add: elt_set_times_def set_times) avigad@16908: apply (rule_tac x = "ba * bb" in exI) avigad@16908: apply (auto simp add: mult_ac) avigad@16908: apply (rule_tac x = "aa * a" in exI) avigad@16908: apply (auto simp add: mult_ac) avigad@16908: done avigad@16908: avigad@16908: lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) = avigad@16908: (a * b) *o C" avigad@16908: by (auto simp add: elt_set_times_def mult_assoc) avigad@16908: avigad@16908: lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) * C = avigad@16908: a *o (B * C)" avigad@16908: apply (auto simp add: elt_set_times_def set_times) avigad@16908: apply (blast intro: mult_ac) avigad@16908: apply (rule_tac x = "a * aa" in exI) avigad@16908: apply (rule conjI) avigad@16908: apply (rule_tac x = "aa" in bexI) avigad@16908: apply auto avigad@16908: apply (rule_tac x = "ba" in bexI) avigad@16908: apply (auto simp add: mult_ac) avigad@16908: done avigad@16908: avigad@16908: theorem set_times_rearrange4: "C * ((a::'a::comm_monoid_mult) *o D) = avigad@16908: a *o (C * D)" avigad@16908: apply (auto intro!: subsetI simp add: elt_set_times_def set_times avigad@16908: mult_ac) avigad@16908: apply (rule_tac x = "aa * ba" in exI) avigad@16908: apply (auto simp add: mult_ac) avigad@16908: done avigad@16908: avigad@16908: theorems set_times_rearranges = set_times_rearrange set_times_rearrange2 avigad@16908: set_times_rearrange3 set_times_rearrange4 avigad@16908: avigad@16908: lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D" avigad@16908: by (auto simp add: elt_set_times_def) avigad@16908: avigad@16908: lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==> avigad@16908: C * E <= D * F" avigad@16908: by (auto simp add: set_times) avigad@16908: avigad@16908: lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C * D" avigad@16908: by (auto simp add: elt_set_times_def set_times) avigad@16908: avigad@16908: lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==> avigad@16908: a *o D <= D * C" avigad@16908: by (auto simp add: elt_set_times_def set_times mult_ac) avigad@16908: avigad@16908: lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C * D" avigad@16908: apply (subgoal_tac "a *o B <= a *o D") avigad@16908: apply (erule order_trans) avigad@16908: apply (erule set_times_mono3) avigad@16908: apply (erule set_times_mono) avigad@16908: done avigad@16908: avigad@16908: lemma set_times_mono_b: "C <= D ==> x : a *o C avigad@16908: ==> x : a *o D" avigad@16908: apply (frule set_times_mono) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C * E ==> avigad@16908: x : D * F" avigad@16908: apply (frule set_times_mono2) avigad@16908: prefer 2 avigad@16908: apply force avigad@16908: apply assumption avigad@16908: done avigad@16908: avigad@16908: lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C * D" avigad@16908: apply (frule set_times_mono3) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==> avigad@16908: x : a *o D ==> x : D * C" avigad@16908: apply (frule set_times_mono4) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C" avigad@16908: by (auto simp add: elt_set_times_def) avigad@16908: avigad@16908: lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)= avigad@16908: (a * b) +o (a *o C)" avigad@16908: by (auto simp add: elt_set_plus_def elt_set_times_def ring_distrib) avigad@16908: avigad@16908: lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B + C) = avigad@16908: (a *o B) + (a *o C)" avigad@16908: apply (auto simp add: set_plus elt_set_times_def ring_distrib) avigad@16908: apply blast avigad@16908: apply (rule_tac x = "b + bb" in exI) avigad@16908: apply (auto simp add: ring_distrib) avigad@16908: done avigad@16908: avigad@16908: lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) * D <= avigad@16908: a *o D + C * D" avigad@16908: apply (auto intro!: subsetI simp add: avigad@16908: elt_set_plus_def elt_set_times_def set_times avigad@16908: set_plus ring_distrib) avigad@16908: apply auto avigad@16908: done avigad@16908: avigad@16908: theorems set_times_plus_distribs = set_times_plus_distrib avigad@16908: set_times_plus_distrib2 avigad@16908: avigad@16908: lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==> avigad@16908: - a : C" avigad@16908: by (auto simp add: elt_set_times_def) avigad@16908: avigad@16908: lemma set_neg_intro2: "(a::'a::ring_1) : C ==> avigad@16908: - a : (- 1) *o C" avigad@16908: by (auto simp add: elt_set_times_def) avigad@16908: avigad@16908: end