wenzelm@41959: (* Title: HOL/Complex.thy paulson@13957: Author: Jacques D. Fleuriot paulson@13957: Copyright: 2001 University of Edinburgh paulson@14387: Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 paulson@13957: *) paulson@13957: paulson@14377: header {* Complex Numbers: Rectangular and Polar Representations *} paulson@14373: nipkow@15131: theory Complex haftmann@28952: imports Transcendental nipkow@15131: begin paulson@13957: hoelzl@56889: text {* blanchet@58146: We use the @{text codatatype} command to define the type of complex numbers. This allows us to use blanchet@58146: @{text primcorec} to define complex functions by defining their real and imaginary result blanchet@58146: separately. hoelzl@56889: *} paulson@14373: hoelzl@56889: codatatype complex = Complex (Re: real) (Im: real) hoelzl@56889: hoelzl@56889: lemma complex_surj: "Complex (Re z) (Im z) = z" hoelzl@56889: by (rule complex.collapse) paulson@13957: huffman@44065: lemma complex_eqI [intro?]: "\Re x = Re y; Im x = Im y\ \ x = y" hoelzl@56889: by (rule complex.expand) simp huffman@23125: huffman@44065: lemma complex_eq_iff: "x = y \ Re x = Re y \ Im x = Im y" hoelzl@56889: by (auto intro: complex.expand) huffman@23125: huffman@23125: subsection {* Addition and Subtraction *} huffman@23125: haftmann@25599: instantiation complex :: ab_group_add haftmann@25571: begin haftmann@25571: hoelzl@56889: primcorec zero_complex where hoelzl@56889: "Re 0 = 0" hoelzl@56889: | "Im 0 = 0" haftmann@25571: hoelzl@56889: primcorec plus_complex where hoelzl@56889: "Re (x + y) = Re x + Re y" hoelzl@56889: | "Im (x + y) = Im x + Im y" haftmann@25712: hoelzl@56889: primcorec uminus_complex where hoelzl@56889: "Re (- x) = - Re x" hoelzl@56889: | "Im (- x) = - Im x" huffman@23125: hoelzl@56889: primcorec minus_complex where hoelzl@56889: "Re (x - y) = Re x - Re y" hoelzl@56889: | "Im (x - y) = Im x - Im y" huffman@23125: haftmann@25712: instance hoelzl@56889: by intro_classes (simp_all add: complex_eq_iff) haftmann@25712: haftmann@25712: end haftmann@25712: huffman@23125: subsection {* Multiplication and Division *} huffman@23125: haftmann@36409: instantiation complex :: field_inverse_zero haftmann@25571: begin haftmann@25571: hoelzl@56889: primcorec one_complex where hoelzl@56889: "Re 1 = 1" hoelzl@56889: | "Im 1 = 0" paulson@14323: hoelzl@56889: primcorec times_complex where hoelzl@56889: "Re (x * y) = Re x * Re y - Im x * Im y" hoelzl@56889: | "Im (x * y) = Re x * Im y + Im x * Re y" paulson@14323: hoelzl@56889: primcorec inverse_complex where hoelzl@56889: "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)" hoelzl@56889: | "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)" paulson@14335: hoelzl@56889: definition "x / (y\complex) = x * inverse y" paulson@14335: haftmann@25712: instance hoelzl@56889: by intro_classes hoelzl@56889: (simp_all add: complex_eq_iff divide_complex_def hoelzl@56889: distrib_left distrib_right right_diff_distrib left_diff_distrib hoelzl@56889: power2_eq_square add_divide_distrib [symmetric]) paulson@14335: haftmann@25712: end huffman@23125: hoelzl@56889: lemma Re_divide: "Re (x / y) = (Re x * Re y + Im x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)" hoelzl@56889: unfolding divide_complex_def by (simp add: add_divide_distrib) huffman@23125: hoelzl@56889: lemma Im_divide: "Im (x / y) = (Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)" hoelzl@56889: unfolding divide_complex_def times_complex.sel inverse_complex.sel hoelzl@56889: by (simp_all add: divide_simps) huffman@23125: hoelzl@56889: lemma Re_power2: "Re (x ^ 2) = (Re x)^2 - (Im x)^2" hoelzl@56889: by (simp add: power2_eq_square) huffman@20556: hoelzl@56889: lemma Im_power2: "Im (x ^ 2) = 2 * Re x * Im x" hoelzl@56889: by (simp add: power2_eq_square) hoelzl@56889: hoelzl@56889: lemma Re_power_real: "Im x = 0 \ Re (x ^ n) = Re x ^ n " huffman@44724: by (induct n) simp_all huffman@23125: hoelzl@56889: lemma Im_power_real: "Im x = 0 \ Im (x ^ n) = 0" hoelzl@56889: by (induct n) simp_all huffman@23125: huffman@23125: subsection {* Scalar Multiplication *} huffman@20556: haftmann@25712: instantiation complex :: real_field haftmann@25571: begin haftmann@25571: hoelzl@56889: primcorec scaleR_complex where hoelzl@56889: "Re (scaleR r x) = r * Re x" hoelzl@56889: | "Im (scaleR r x) = r * Im x" huffman@22972: haftmann@25712: instance huffman@20556: proof huffman@23125: fix a b :: real and x y :: complex huffman@23125: show "scaleR a (x + y) = scaleR a x + scaleR a y" webertj@49962: by (simp add: complex_eq_iff distrib_left) huffman@23125: show "scaleR (a + b) x = scaleR a x + scaleR b x" webertj@49962: by (simp add: complex_eq_iff distrib_right) huffman@23125: show "scaleR a (scaleR b x) = scaleR (a * b) x" haftmann@57512: by (simp add: complex_eq_iff mult.assoc) huffman@23125: show "scaleR 1 x = x" huffman@44065: by (simp add: complex_eq_iff) huffman@23125: show "scaleR a x * y = scaleR a (x * y)" huffman@44065: by (simp add: complex_eq_iff algebra_simps) huffman@23125: show "x * scaleR a y = scaleR a (x * y)" huffman@44065: by (simp add: complex_eq_iff algebra_simps) huffman@20556: qed huffman@20556: haftmann@25712: end haftmann@25712: hoelzl@56889: subsection {* Numerals, Arithmetic, and Embedding from Reals *} paulson@14323: huffman@44724: abbreviation complex_of_real :: "real \ complex" huffman@44724: where "complex_of_real \ of_real" huffman@20557: hoelzl@56331: declare [[coercion complex_of_real]] hoelzl@56889: declare [[coercion "of_int :: int \ complex"]] hoelzl@56889: declare [[coercion "of_nat :: nat \ complex"]] hoelzl@56331: hoelzl@56889: lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n" hoelzl@56889: by (induct n) simp_all hoelzl@56889: hoelzl@56889: lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0" hoelzl@56889: by (induct n) simp_all hoelzl@56889: hoelzl@56889: lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z" hoelzl@56889: by (cases z rule: int_diff_cases) simp hoelzl@56889: hoelzl@56889: lemma complex_Im_of_int [simp]: "Im (of_int z) = 0" hoelzl@56889: by (cases z rule: int_diff_cases) simp hoelzl@56889: hoelzl@56889: lemma complex_Re_numeral [simp]: "Re (numeral v) = numeral v" hoelzl@56889: using complex_Re_of_int [of "numeral v"] by simp hoelzl@56889: hoelzl@56889: lemma complex_Im_numeral [simp]: "Im (numeral v) = 0" hoelzl@56889: using complex_Im_of_int [of "numeral v"] by simp huffman@20557: huffman@20557: lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z" hoelzl@56889: by (simp add: of_real_def) huffman@20557: huffman@20557: lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0" hoelzl@56889: by (simp add: of_real_def) hoelzl@56889: hoelzl@56889: subsection {* The Complex Number $i$ *} hoelzl@56889: hoelzl@56889: primcorec "ii" :: complex ("\") where hoelzl@56889: "Re ii = 0" hoelzl@56889: | "Im ii = 1" huffman@20557: hoelzl@57259: lemma Complex_eq[simp]: "Complex a b = a + \ * b" hoelzl@57259: by (simp add: complex_eq_iff) hoelzl@57259: hoelzl@57259: lemma complex_eq: "a = Re a + \ * Im a" hoelzl@57259: by (simp add: complex_eq_iff) hoelzl@57259: hoelzl@57259: lemma fun_complex_eq: "f = (\x. Re (f x) + \ * Im (f x))" hoelzl@57259: by (simp add: fun_eq_iff complex_eq) hoelzl@57259: hoelzl@56889: lemma i_squared [simp]: "ii * ii = -1" hoelzl@56889: by (simp add: complex_eq_iff) hoelzl@56889: hoelzl@56889: lemma power2_i [simp]: "ii\<^sup>2 = -1" hoelzl@56889: by (simp add: power2_eq_square) paulson@14377: hoelzl@56889: lemma inverse_i [simp]: "inverse ii = - ii" hoelzl@56889: by (rule inverse_unique) simp hoelzl@56889: hoelzl@56889: lemma divide_i [simp]: "x / ii = - ii * x" hoelzl@56889: by (simp add: divide_complex_def) paulson@14377: hoelzl@56889: lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x" haftmann@57512: by (simp add: mult.assoc [symmetric]) paulson@14377: hoelzl@56889: lemma complex_i_not_zero [simp]: "ii \ 0" hoelzl@56889: by (simp add: complex_eq_iff) huffman@20557: hoelzl@56889: lemma complex_i_not_one [simp]: "ii \ 1" hoelzl@56889: by (simp add: complex_eq_iff) hoelzl@56889: hoelzl@56889: lemma complex_i_not_numeral [simp]: "ii \ numeral w" hoelzl@56889: by (simp add: complex_eq_iff) huffman@44841: hoelzl@56889: lemma complex_i_not_neg_numeral [simp]: "ii \ - numeral w" hoelzl@56889: by (simp add: complex_eq_iff) hoelzl@56889: hoelzl@56889: lemma complex_split_polar: "\r a. z = complex_of_real r * (cos a + \ * sin a)" huffman@44827: by (simp add: complex_eq_iff polar_Ex) huffman@44827: huffman@23125: subsection {* Vector Norm *} paulson@14323: haftmann@25712: instantiation complex :: real_normed_field haftmann@25571: begin haftmann@25571: hoelzl@56889: definition "norm z = sqrt ((Re z)\<^sup>2 + (Im z)\<^sup>2)" haftmann@25571: huffman@44724: abbreviation cmod :: "complex \ real" huffman@44724: where "cmod \ norm" haftmann@25571: huffman@31413: definition complex_sgn_def: huffman@31413: "sgn x = x /\<^sub>R cmod x" haftmann@25571: huffman@31413: definition dist_complex_def: huffman@31413: "dist x y = cmod (x - y)" huffman@31413: haftmann@37767: definition open_complex_def: huffman@31492: "open (S :: complex set) \ (\x\S. \e>0. \y. dist y x < e \ y \ S)" huffman@31292: huffman@31413: instance proof huffman@31492: fix r :: real and x y :: complex and S :: "complex set" huffman@23125: show "(norm x = 0) = (x = 0)" hoelzl@56889: by (simp add: norm_complex_def complex_eq_iff) huffman@23125: show "norm (x + y) \ norm x + norm y" hoelzl@56889: by (simp add: norm_complex_def complex_eq_iff real_sqrt_sum_squares_triangle_ineq) huffman@23125: show "norm (scaleR r x) = \r\ * norm x" hoelzl@56889: by (simp add: norm_complex_def complex_eq_iff power_mult_distrib distrib_left [symmetric] real_sqrt_mult) huffman@23125: show "norm (x * y) = norm x * norm y" hoelzl@56889: by (simp add: norm_complex_def complex_eq_iff real_sqrt_mult [symmetric] power2_eq_square algebra_simps) hoelzl@56889: qed (rule complex_sgn_def dist_complex_def open_complex_def)+ huffman@20557: haftmann@25712: end haftmann@25712: hoelzl@56889: lemma norm_ii [simp]: "norm ii = 1" hoelzl@56889: by (simp add: norm_complex_def) paulson@14323: hoelzl@56889: lemma cmod_unit_one: "cmod (cos a + \ * sin a) = 1" hoelzl@56889: by (simp add: norm_complex_def) hoelzl@56889: hoelzl@56889: lemma cmod_complex_polar: "cmod (r * (cos a + \ * sin a)) = \r\" hoelzl@56889: by (simp add: norm_mult cmod_unit_one) huffman@22861: huffman@22861: lemma complex_Re_le_cmod: "Re x \ cmod x" hoelzl@56889: unfolding norm_complex_def huffman@44724: by (rule real_sqrt_sum_squares_ge1) huffman@22861: huffman@44761: lemma complex_mod_minus_le_complex_mod: "- cmod x \ cmod x" hoelzl@56889: by (rule order_trans [OF _ norm_ge_zero]) simp huffman@22861: hoelzl@56889: lemma complex_mod_triangle_ineq2: "cmod (b + a) - cmod b \ cmod a" hoelzl@56889: by (rule ord_le_eq_trans [OF norm_triangle_ineq2]) simp paulson@14323: chaieb@26117: lemma abs_Re_le_cmod: "\Re x\ \ cmod x" hoelzl@56889: by (simp add: norm_complex_def) chaieb@26117: chaieb@26117: lemma abs_Im_le_cmod: "\Im x\ \ cmod x" hoelzl@56889: by (simp add: norm_complex_def) hoelzl@56889: hoelzl@57259: lemma cmod_le: "cmod z \ \Re z\ + \Im z\" hoelzl@57259: apply (subst complex_eq) hoelzl@57259: apply (rule order_trans) hoelzl@57259: apply (rule norm_triangle_ineq) hoelzl@57259: apply (simp add: norm_mult) hoelzl@57259: done hoelzl@57259: hoelzl@56889: lemma cmod_eq_Re: "Im z = 0 \ cmod z = \Re z\" hoelzl@56889: by (simp add: norm_complex_def) hoelzl@56889: hoelzl@56889: lemma cmod_eq_Im: "Re z = 0 \ cmod z = \Im z\" hoelzl@56889: by (simp add: norm_complex_def) huffman@44724: hoelzl@56889: lemma cmod_power2: "cmod z ^ 2 = (Re z)^2 + (Im z)^2" hoelzl@56889: by (simp add: norm_complex_def) hoelzl@56889: hoelzl@56889: lemma cmod_plus_Re_le_0_iff: "cmod z + Re z \ 0 \ Re z = - cmod z" hoelzl@56889: using abs_Re_le_cmod[of z] by auto hoelzl@56889: hoelzl@56889: lemma Im_eq_0: "\Re z\ = cmod z \ Im z = 0" hoelzl@56889: by (subst (asm) power_eq_iff_eq_base[symmetric, where n=2]) hoelzl@56889: (auto simp add: norm_complex_def) hoelzl@56369: hoelzl@56369: lemma abs_sqrt_wlog: hoelzl@56369: fixes x::"'a::linordered_idom" hoelzl@56369: assumes "\x::'a. x \ 0 \ P x (x\<^sup>2)" shows "P \x\ (x\<^sup>2)" hoelzl@56369: by (metis abs_ge_zero assms power2_abs) hoelzl@56369: hoelzl@56369: lemma complex_abs_le_norm: "\Re z\ + \Im z\ \ sqrt 2 * norm z" hoelzl@56889: unfolding norm_complex_def hoelzl@56369: apply (rule abs_sqrt_wlog [where x="Re z"]) hoelzl@56369: apply (rule abs_sqrt_wlog [where x="Im z"]) hoelzl@56369: apply (rule power2_le_imp_le) haftmann@57512: apply (simp_all add: power2_sum add.commute sum_squares_bound real_sqrt_mult [symmetric]) hoelzl@56369: done hoelzl@56369: hoelzl@56369: huffman@44843: text {* Properties of complex signum. *} huffman@44843: huffman@44843: lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)" haftmann@57512: by (simp add: sgn_div_norm divide_inverse scaleR_conv_of_real mult.commute) huffman@44843: huffman@44843: lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z" huffman@44843: by (simp add: complex_sgn_def divide_inverse) huffman@44843: huffman@44843: lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z" huffman@44843: by (simp add: complex_sgn_def divide_inverse) huffman@44843: paulson@14354: huffman@23123: subsection {* Completeness of the Complexes *} huffman@23123: huffman@44290: lemma bounded_linear_Re: "bounded_linear Re" hoelzl@56889: by (rule bounded_linear_intro [where K=1], simp_all add: norm_complex_def) huffman@44290: huffman@44290: lemma bounded_linear_Im: "bounded_linear Im" hoelzl@56889: by (rule bounded_linear_intro [where K=1], simp_all add: norm_complex_def) huffman@23123: huffman@44290: lemmas Cauchy_Re = bounded_linear.Cauchy [OF bounded_linear_Re] huffman@44290: lemmas Cauchy_Im = bounded_linear.Cauchy [OF bounded_linear_Im] hoelzl@56381: lemmas tendsto_Re [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Re] hoelzl@56381: lemmas tendsto_Im [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_Im] hoelzl@56381: lemmas isCont_Re [simp] = bounded_linear.isCont [OF bounded_linear_Re] hoelzl@56381: lemmas isCont_Im [simp] = bounded_linear.isCont [OF bounded_linear_Im] hoelzl@56381: lemmas continuous_Re [simp] = bounded_linear.continuous [OF bounded_linear_Re] hoelzl@56381: lemmas continuous_Im [simp] = bounded_linear.continuous [OF bounded_linear_Im] hoelzl@56381: lemmas continuous_on_Re [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Re] hoelzl@56381: lemmas continuous_on_Im [continuous_intros] = bounded_linear.continuous_on[OF bounded_linear_Im] hoelzl@56381: lemmas has_derivative_Re [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Re] hoelzl@56381: lemmas has_derivative_Im [derivative_intros] = bounded_linear.has_derivative[OF bounded_linear_Im] hoelzl@56381: lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re] hoelzl@56381: lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im] hoelzl@56369: huffman@36825: lemma tendsto_Complex [tendsto_intros]: hoelzl@56889: "(f ---> a) F \ (g ---> b) F \ ((\x. Complex (f x) (g x)) ---> Complex a b) F" hoelzl@56889: by (auto intro!: tendsto_intros) hoelzl@56369: hoelzl@56369: lemma tendsto_complex_iff: hoelzl@56369: "(f ---> x) F \ (((\x. Re (f x)) ---> Re x) F \ ((\x. Im (f x)) ---> Im x) F)" hoelzl@56889: proof safe hoelzl@56889: assume "((\x. Re (f x)) ---> Re x) F" "((\x. Im (f x)) ---> Im x) F" hoelzl@56889: from tendsto_Complex[OF this] show "(f ---> x) F" hoelzl@56889: unfolding complex.collapse . hoelzl@56889: qed (auto intro: tendsto_intros) hoelzl@56369: hoelzl@57259: lemma continuous_complex_iff: "continuous F f \ hoelzl@57259: continuous F (\x. Re (f x)) \ continuous F (\x. Im (f x))" hoelzl@57259: unfolding continuous_def tendsto_complex_iff .. hoelzl@57259: hoelzl@57259: lemma has_vector_derivative_complex_iff: "(f has_vector_derivative x) F \ hoelzl@57259: ((\x. Re (f x)) has_field_derivative (Re x)) F \ hoelzl@57259: ((\x. Im (f x)) has_field_derivative (Im x)) F" hoelzl@57259: unfolding has_vector_derivative_def has_field_derivative_def has_derivative_def tendsto_complex_iff hoelzl@57259: by (simp add: field_simps bounded_linear_scaleR_left bounded_linear_mult_right) hoelzl@57259: hoelzl@57259: lemma has_field_derivative_Re[derivative_intros]: hoelzl@57259: "(f has_vector_derivative D) F \ ((\x. Re (f x)) has_field_derivative (Re D)) F" hoelzl@57259: unfolding has_vector_derivative_complex_iff by safe hoelzl@57259: hoelzl@57259: lemma has_field_derivative_Im[derivative_intros]: hoelzl@57259: "(f has_vector_derivative D) F \ ((\x. Im (f x)) has_field_derivative (Im D)) F" hoelzl@57259: unfolding has_vector_derivative_complex_iff by safe hoelzl@57259: huffman@23123: instance complex :: banach huffman@23123: proof huffman@23123: fix X :: "nat \ complex" huffman@23123: assume X: "Cauchy X" hoelzl@56889: then have "(\n. Complex (Re (X n)) (Im (X n))) ----> Complex (lim (\n. Re (X n))) (lim (\n. Im (X n)))" hoelzl@56889: by (intro tendsto_Complex convergent_LIMSEQ_iff[THEN iffD1] Cauchy_convergent_iff[THEN iffD1] Cauchy_Re Cauchy_Im) hoelzl@56889: then show "convergent X" hoelzl@56889: unfolding complex.collapse by (rule convergentI) huffman@23123: qed huffman@23123: lp15@56238: declare hoelzl@56381: DERIV_power[where 'a=complex, unfolded of_nat_def[symmetric], derivative_intros] lp15@56238: huffman@23125: subsection {* Complex Conjugation *} huffman@23125: hoelzl@56889: primcorec cnj :: "complex \ complex" where hoelzl@56889: "Re (cnj z) = Re z" hoelzl@56889: | "Im (cnj z) = - Im z" huffman@23125: huffman@23125: lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z" hoelzl@56889: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_cnj_zero [simp]: "cnj 0 = 0" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: hoelzl@56889: lemma complex_cnj_add [simp]: "cnj (x + y) = cnj x + cnj y" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: hoelzl@56889: lemma cnj_setsum [simp]: "cnj (setsum f s) = (\x\s. cnj (f x))" hoelzl@56889: by (induct s rule: infinite_finite_induct) auto hoelzl@56369: hoelzl@56889: lemma complex_cnj_diff [simp]: "cnj (x - y) = cnj x - cnj y" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: hoelzl@56889: lemma complex_cnj_minus [simp]: "cnj (- x) = - cnj x" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_cnj_one [simp]: "cnj 1 = 1" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: hoelzl@56889: lemma complex_cnj_mult [simp]: "cnj (x * y) = cnj x * cnj y" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: hoelzl@56889: lemma cnj_setprod [simp]: "cnj (setprod f s) = (\x\s. cnj (f x))" hoelzl@56889: by (induct s rule: infinite_finite_induct) auto hoelzl@56369: hoelzl@56889: lemma complex_cnj_inverse [simp]: "cnj (inverse x) = inverse (cnj x)" hoelzl@56889: by (simp add: complex_eq_iff) paulson@14323: hoelzl@56889: lemma complex_cnj_divide [simp]: "cnj (x / y) = cnj x / cnj y" hoelzl@56889: by (simp add: divide_complex_def) huffman@23125: hoelzl@56889: lemma complex_cnj_power [simp]: "cnj (x ^ n) = cnj x ^ n" hoelzl@56889: by (induct n) simp_all huffman@23125: huffman@23125: lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@47108: lemma complex_cnj_numeral [simp]: "cnj (numeral w) = numeral w" huffman@47108: by (simp add: complex_eq_iff) huffman@47108: haftmann@54489: lemma complex_cnj_neg_numeral [simp]: "cnj (- numeral w) = - numeral w" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: hoelzl@56889: lemma complex_cnj_scaleR [simp]: "cnj (scaleR r x) = scaleR r (cnj x)" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z" hoelzl@56889: by (simp add: norm_complex_def) paulson@14323: huffman@23125: lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_cnj_i [simp]: "cnj ii = - ii" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)" huffman@44724: by (simp add: complex_eq_iff) huffman@23125: huffman@23125: lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii" huffman@44724: by (simp add: complex_eq_iff) paulson@14354: wenzelm@53015: lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<^sup>2 + (Im z)\<^sup>2)" huffman@44724: by (simp add: complex_eq_iff power2_eq_square) huffman@23125: wenzelm@53015: lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<^sup>2" huffman@44724: by (simp add: norm_mult power2_eq_square) huffman@23125: huffman@44827: lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" hoelzl@56889: by (simp add: norm_complex_def power2_eq_square) huffman@44827: huffman@44827: lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0" huffman@44827: by simp huffman@44827: huffman@44290: lemma bounded_linear_cnj: "bounded_linear cnj" huffman@44127: using complex_cnj_add complex_cnj_scaleR huffman@44127: by (rule bounded_linear_intro [where K=1], simp) paulson@14354: hoelzl@56381: lemmas tendsto_cnj [tendsto_intros] = bounded_linear.tendsto [OF bounded_linear_cnj] hoelzl@56381: lemmas isCont_cnj [simp] = bounded_linear.isCont [OF bounded_linear_cnj] hoelzl@56381: lemmas continuous_cnj [simp, continuous_intros] = bounded_linear.continuous [OF bounded_linear_cnj] hoelzl@56381: lemmas continuous_on_cnj [simp, continuous_intros] = bounded_linear.continuous_on [OF bounded_linear_cnj] hoelzl@56381: lemmas has_derivative_cnj [simp, derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_cnj] huffman@44290: hoelzl@56369: lemma lim_cnj: "((\x. cnj(f x)) ---> cnj l) F \ (f ---> l) F" hoelzl@56889: by (simp add: tendsto_iff dist_complex_def complex_cnj_diff [symmetric] del: complex_cnj_diff) hoelzl@56369: hoelzl@56369: lemma sums_cnj: "((\x. cnj(f x)) sums cnj l) \ (f sums l)" hoelzl@56889: by (simp add: sums_def lim_cnj cnj_setsum [symmetric] del: cnj_setsum) hoelzl@56369: paulson@14354: lp15@55734: subsection{*Basic Lemmas*} lp15@55734: lp15@55734: lemma complex_eq_0: "z=0 \ (Re z)\<^sup>2 + (Im z)\<^sup>2 = 0" hoelzl@56889: by (metis zero_complex.sel complex_eqI sum_power2_eq_zero_iff) lp15@55734: lp15@55734: lemma complex_neq_0: "z\0 \ (Re z)\<^sup>2 + (Im z)\<^sup>2 > 0" hoelzl@56889: by (metis complex_eq_0 less_numeral_extra(3) sum_power2_gt_zero_iff) lp15@55734: lp15@55734: lemma complex_norm_square: "of_real ((norm z)\<^sup>2) = z * cnj z" hoelzl@56889: by (cases z) hoelzl@56889: (auto simp: complex_eq_iff norm_complex_def power2_eq_square[symmetric] of_real_power[symmetric] hoelzl@56889: simp del: of_real_power) lp15@55734: hoelzl@56889: lemma re_complex_div_eq_0: "Re (a / b) = 0 \ Re (a * cnj b) = 0" hoelzl@56889: by (auto simp add: Re_divide) hoelzl@56889: hoelzl@56889: lemma im_complex_div_eq_0: "Im (a / b) = 0 \ Im (a * cnj b) = 0" hoelzl@56889: by (auto simp add: Im_divide) hoelzl@56889: hoelzl@56889: lemma complex_div_gt_0: hoelzl@56889: "(Re (a / b) > 0 \ Re (a * cnj b) > 0) \ (Im (a / b) > 0 \ Im (a * cnj b) > 0)" hoelzl@56889: proof cases hoelzl@56889: assume "b = 0" then show ?thesis by auto lp15@55734: next hoelzl@56889: assume "b \ 0" hoelzl@56889: then have "0 < (Re b)\<^sup>2 + (Im b)\<^sup>2" hoelzl@56889: by (simp add: complex_eq_iff sum_power2_gt_zero_iff) hoelzl@56889: then show ?thesis hoelzl@56889: by (simp add: Re_divide Im_divide zero_less_divide_iff) lp15@55734: qed lp15@55734: hoelzl@56889: lemma re_complex_div_gt_0: "Re (a / b) > 0 \ Re (a * cnj b) > 0" hoelzl@56889: and im_complex_div_gt_0: "Im (a / b) > 0 \ Im (a * cnj b) > 0" hoelzl@56889: using complex_div_gt_0 by auto lp15@55734: lp15@55734: lemma re_complex_div_ge_0: "Re(a / b) \ 0 \ Re(a * cnj b) \ 0" lp15@55734: by (metis le_less re_complex_div_eq_0 re_complex_div_gt_0) lp15@55734: lp15@55734: lemma im_complex_div_ge_0: "Im(a / b) \ 0 \ Im(a * cnj b) \ 0" lp15@55734: by (metis im_complex_div_eq_0 im_complex_div_gt_0 le_less) lp15@55734: lp15@55734: lemma re_complex_div_lt_0: "Re(a / b) < 0 \ Re(a * cnj b) < 0" boehmes@55759: by (metis less_asym neq_iff re_complex_div_eq_0 re_complex_div_gt_0) lp15@55734: lp15@55734: lemma im_complex_div_lt_0: "Im(a / b) < 0 \ Im(a * cnj b) < 0" lp15@55734: by (metis im_complex_div_eq_0 im_complex_div_gt_0 less_asym neq_iff) lp15@55734: lp15@55734: lemma re_complex_div_le_0: "Re(a / b) \ 0 \ Re(a * cnj b) \ 0" lp15@55734: by (metis not_le re_complex_div_gt_0) lp15@55734: lp15@55734: lemma im_complex_div_le_0: "Im(a / b) \ 0 \ Im(a * cnj b) \ 0" lp15@55734: by (metis im_complex_div_gt_0 not_le) lp15@55734: hoelzl@56889: lemma Re_setsum[simp]: "Re (setsum f s) = (\x\s. Re (f x))" hoelzl@56369: by (induct s rule: infinite_finite_induct) auto lp15@55734: hoelzl@56889: lemma Im_setsum[simp]: "Im (setsum f s) = (\x\s. Im(f x))" hoelzl@56369: by (induct s rule: infinite_finite_induct) auto hoelzl@56369: hoelzl@56369: lemma sums_complex_iff: "f sums x \ ((\x. Re (f x)) sums Re x) \ ((\x. Im (f x)) sums Im x)" hoelzl@56369: unfolding sums_def tendsto_complex_iff Im_setsum Re_setsum .. hoelzl@56369: hoelzl@56369: lemma summable_complex_iff: "summable f \ summable (\x. Re (f x)) \ summable (\x. Im (f x))" hoelzl@56889: unfolding summable_def sums_complex_iff[abs_def] by (metis complex.sel) hoelzl@56369: hoelzl@56369: lemma summable_complex_of_real [simp]: "summable (\n. complex_of_real (f n)) \ summable f" hoelzl@56369: unfolding summable_complex_iff by simp hoelzl@56369: hoelzl@56369: lemma summable_Re: "summable f \ summable (\x. Re (f x))" hoelzl@56369: unfolding summable_complex_iff by blast hoelzl@56369: hoelzl@56369: lemma summable_Im: "summable f \ summable (\x. Im (f x))" hoelzl@56369: unfolding summable_complex_iff by blast lp15@56217: hoelzl@56889: lemma complex_is_Real_iff: "z \ \ \ Im z = 0" hoelzl@56889: by (auto simp: Reals_def complex_eq_iff) lp15@55734: lp15@55734: lemma Reals_cnj_iff: "z \ \ \ cnj z = z" hoelzl@56889: by (auto simp: complex_is_Real_iff complex_eq_iff) lp15@55734: lp15@55734: lemma in_Reals_norm: "z \ \ \ norm(z) = abs(Re z)" hoelzl@56889: by (simp add: complex_is_Real_iff norm_complex_def) hoelzl@56369: hoelzl@56369: lemma series_comparison_complex: hoelzl@56369: fixes f:: "nat \ 'a::banach" hoelzl@56369: assumes sg: "summable g" hoelzl@56369: and "\n. g n \ \" "\n. Re (g n) \ 0" hoelzl@56369: and fg: "\n. n \ N \ norm(f n) \ norm(g n)" hoelzl@56369: shows "summable f" hoelzl@56369: proof - hoelzl@56369: have g: "\n. cmod (g n) = Re (g n)" using assms hoelzl@56369: by (metis abs_of_nonneg in_Reals_norm) hoelzl@56369: show ?thesis hoelzl@56369: apply (rule summable_comparison_test' [where g = "\n. norm (g n)" and N=N]) hoelzl@56369: using sg hoelzl@56369: apply (auto simp: summable_def) hoelzl@56369: apply (rule_tac x="Re s" in exI) hoelzl@56369: apply (auto simp: g sums_Re) hoelzl@56369: apply (metis fg g) hoelzl@56369: done hoelzl@56369: qed lp15@55734: paulson@14323: subsection{*Finally! Polar Form for Complex Numbers*} paulson@14323: huffman@44827: subsubsection {* $\cos \theta + i \sin \theta$ *} huffman@20557: hoelzl@56889: primcorec cis :: "real \ complex" where hoelzl@56889: "Re (cis a) = cos a" hoelzl@56889: | "Im (cis a) = sin a" huffman@44827: huffman@44827: lemma cis_zero [simp]: "cis 0 = 1" hoelzl@56889: by (simp add: complex_eq_iff) huffman@44827: huffman@44828: lemma norm_cis [simp]: "norm (cis a) = 1" hoelzl@56889: by (simp add: norm_complex_def) huffman@44828: huffman@44828: lemma sgn_cis [simp]: "sgn (cis a) = cis a" huffman@44828: by (simp add: sgn_div_norm) huffman@44828: huffman@44828: lemma cis_neq_zero [simp]: "cis a \ 0" huffman@44828: by (metis norm_cis norm_zero zero_neq_one) huffman@44828: huffman@44827: lemma cis_mult: "cis a * cis b = cis (a + b)" hoelzl@56889: by (simp add: complex_eq_iff cos_add sin_add) huffman@44827: huffman@44827: lemma DeMoivre: "(cis a) ^ n = cis (real n * a)" huffman@44827: by (induct n, simp_all add: real_of_nat_Suc algebra_simps cis_mult) huffman@44827: huffman@44827: lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)" hoelzl@56889: by (simp add: complex_eq_iff) huffman@44827: huffman@44827: lemma cis_divide: "cis a / cis b = cis (a - b)" hoelzl@56889: by (simp add: divide_complex_def cis_mult) huffman@44827: huffman@44827: lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)" huffman@44827: by (auto simp add: DeMoivre) huffman@44827: huffman@44827: lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" huffman@44827: by (auto simp add: DeMoivre) huffman@44827: hoelzl@56889: lemma cis_pi: "cis pi = -1" hoelzl@56889: by (simp add: complex_eq_iff) hoelzl@56889: huffman@44827: subsubsection {* $r(\cos \theta + i \sin \theta)$ *} huffman@44715: hoelzl@56889: definition rcis :: "real \ real \ complex" where huffman@20557: "rcis r a = complex_of_real r * cis a" huffman@20557: huffman@44827: lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a" huffman@44828: by (simp add: rcis_def) huffman@44827: huffman@44827: lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a" huffman@44828: by (simp add: rcis_def) huffman@44827: huffman@44827: lemma rcis_Ex: "\r a. z = rcis r a" huffman@44828: by (simp add: complex_eq_iff polar_Ex) huffman@44827: huffman@44827: lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r" huffman@44828: by (simp add: rcis_def norm_mult) huffman@44827: huffman@44827: lemma cis_rcis_eq: "cis a = rcis 1 a" huffman@44827: by (simp add: rcis_def) huffman@44827: huffman@44827: lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)" huffman@44828: by (simp add: rcis_def cis_mult) huffman@44827: huffman@44827: lemma rcis_zero_mod [simp]: "rcis 0 a = 0" huffman@44827: by (simp add: rcis_def) huffman@44827: huffman@44827: lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r" huffman@44827: by (simp add: rcis_def) huffman@44827: huffman@44828: lemma rcis_eq_zero_iff [simp]: "rcis r a = 0 \ r = 0" huffman@44828: by (simp add: rcis_def) huffman@44828: huffman@44827: lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)" huffman@44827: by (simp add: rcis_def power_mult_distrib DeMoivre) huffman@44827: huffman@44827: lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)" huffman@44827: by (simp add: divide_inverse rcis_def) huffman@44827: huffman@44827: lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)" huffman@44828: by (simp add: rcis_def cis_divide [symmetric]) huffman@44827: huffman@44827: subsubsection {* Complex exponential *} huffman@44827: huffman@44291: abbreviation expi :: "complex \ complex" huffman@44291: where "expi \ exp" huffman@44291: hoelzl@56889: lemma cis_conv_exp: "cis b = exp (\ * b)" hoelzl@56889: proof - hoelzl@56889: { fix n :: nat hoelzl@56889: have "\ ^ n = fact n *\<^sub>R (cos_coeff n + \ * sin_coeff n)" hoelzl@56889: by (induct n) hoelzl@56889: (simp_all add: sin_coeff_Suc cos_coeff_Suc complex_eq_iff Re_divide Im_divide field_simps hoelzl@56889: power2_eq_square real_of_nat_Suc add_nonneg_eq_0_iff hoelzl@56889: real_of_nat_def[symmetric]) hoelzl@56889: then have "(\ * complex_of_real b) ^ n /\<^sub>R fact n = hoelzl@56889: of_real (cos_coeff n * b^n) + \ * of_real (sin_coeff n * b^n)" hoelzl@56889: by (simp add: field_simps) } hoelzl@56889: then show ?thesis hoelzl@56889: by (auto simp add: cis.ctr exp_def simp del: of_real_mult hoelzl@56889: intro!: sums_unique sums_add sums_mult sums_of_real sin_converges cos_converges) huffman@44291: qed huffman@44291: hoelzl@56889: lemma expi_def: "expi z = exp (Re z) * cis (Im z)" hoelzl@56889: unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp by (cases z) simp huffman@20557: huffman@44828: lemma Re_exp: "Re (exp z) = exp (Re z) * cos (Im z)" huffman@44828: unfolding expi_def by simp huffman@44828: huffman@44828: lemma Im_exp: "Im (exp z) = exp (Re z) * sin (Im z)" huffman@44828: unfolding expi_def by simp huffman@44828: paulson@14374: lemma complex_expi_Ex: "\a r. z = complex_of_real r * expi a" paulson@14373: apply (insert rcis_Ex [of z]) haftmann@57512: apply (auto simp add: expi_def rcis_def mult.assoc [symmetric]) paulson@14334: apply (rule_tac x = "ii * complex_of_real a" in exI, auto) paulson@14323: done paulson@14323: paulson@14387: lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1" hoelzl@56889: by (simp add: expi_def complex_eq_iff) paulson@14387: huffman@44844: subsubsection {* Complex argument *} huffman@44844: huffman@44844: definition arg :: "complex \ real" where huffman@44844: "arg z = (if z = 0 then 0 else (SOME a. sgn z = cis a \ -pi < a \ a \ pi))" huffman@44844: huffman@44844: lemma arg_zero: "arg 0 = 0" huffman@44844: by (simp add: arg_def) huffman@44844: huffman@44844: lemma arg_unique: huffman@44844: assumes "sgn z = cis x" and "-pi < x" and "x \ pi" huffman@44844: shows "arg z = x" huffman@44844: proof - huffman@44844: from assms have "z \ 0" by auto huffman@44844: have "(SOME a. sgn z = cis a \ -pi < a \ a \ pi) = x" huffman@44844: proof huffman@44844: fix a def d \ "a - x" huffman@44844: assume a: "sgn z = cis a \ - pi < a \ a \ pi" huffman@44844: from a assms have "- (2*pi) < d \ d < 2*pi" huffman@44844: unfolding d_def by simp huffman@44844: moreover from a assms have "cos a = cos x" and "sin a = sin x" huffman@44844: by (simp_all add: complex_eq_iff) wenzelm@53374: hence cos: "cos d = 1" unfolding d_def cos_diff by simp wenzelm@53374: moreover from cos have "sin d = 0" by (rule cos_one_sin_zero) huffman@44844: ultimately have "d = 0" huffman@44844: unfolding sin_zero_iff even_mult_two_ex wenzelm@53374: by (auto simp add: numeral_2_eq_2 less_Suc_eq) huffman@44844: thus "a = x" unfolding d_def by simp huffman@44844: qed (simp add: assms del: Re_sgn Im_sgn) huffman@44844: with `z \ 0` show "arg z = x" huffman@44844: unfolding arg_def by simp huffman@44844: qed huffman@44844: huffman@44844: lemma arg_correct: huffman@44844: assumes "z \ 0" shows "sgn z = cis (arg z) \ -pi < arg z \ arg z \ pi" huffman@44844: proof (simp add: arg_def assms, rule someI_ex) huffman@44844: obtain r a where z: "z = rcis r a" using rcis_Ex by fast huffman@44844: with assms have "r \ 0" by auto huffman@44844: def b \ "if 0 < r then a else a + pi" huffman@44844: have b: "sgn z = cis b" huffman@44844: unfolding z b_def rcis_def using `r \ 0` hoelzl@56889: by (simp add: of_real_def sgn_scaleR sgn_if complex_eq_iff) huffman@44844: have cis_2pi_nat: "\n. cis (2 * pi * real_of_nat n) = 1" hoelzl@56889: by (induct_tac n) (simp_all add: distrib_left cis_mult [symmetric] complex_eq_iff) huffman@44844: have cis_2pi_int: "\x. cis (2 * pi * real_of_int x) = 1" hoelzl@56889: by (case_tac x rule: int_diff_cases) hoelzl@56889: (simp add: right_diff_distrib cis_divide [symmetric] cis_2pi_nat) huffman@44844: def c \ "b - 2*pi * of_int \(b - pi) / (2*pi)\" huffman@44844: have "sgn z = cis c" huffman@44844: unfolding b c_def huffman@44844: by (simp add: cis_divide [symmetric] cis_2pi_int) huffman@44844: moreover have "- pi < c \ c \ pi" huffman@44844: using ceiling_correct [of "(b - pi) / (2*pi)"] huffman@44844: by (simp add: c_def less_divide_eq divide_le_eq algebra_simps) huffman@44844: ultimately show "\a. sgn z = cis a \ -pi < a \ a \ pi" by fast huffman@44844: qed huffman@44844: huffman@44844: lemma arg_bounded: "- pi < arg z \ arg z \ pi" hoelzl@56889: by (cases "z = 0") (simp_all add: arg_zero arg_correct) huffman@44844: huffman@44844: lemma cis_arg: "z \ 0 \ cis (arg z) = sgn z" huffman@44844: by (simp add: arg_correct) huffman@44844: huffman@44844: lemma rcis_cmod_arg: "rcis (cmod z) (arg z) = z" hoelzl@56889: by (cases "z = 0") (simp_all add: rcis_def cis_arg sgn_div_norm of_real_def) hoelzl@56889: hoelzl@56889: lemma cos_arg_i_mult_zero [simp]: "y \ 0 \ Re y = 0 \ cos (arg y) = 0" hoelzl@56889: using cis_arg [of y] by (simp add: complex_eq_iff) hoelzl@56889: hoelzl@56889: subsection {* Square root of complex numbers *} hoelzl@56889: hoelzl@56889: primcorec csqrt :: "complex \ complex" where hoelzl@56889: "Re (csqrt z) = sqrt ((cmod z + Re z) / 2)" hoelzl@56889: | "Im (csqrt z) = (if Im z = 0 then 1 else sgn (Im z)) * sqrt ((cmod z - Re z) / 2)" hoelzl@56889: hoelzl@56889: lemma csqrt_of_real_nonneg [simp]: "Im x = 0 \ Re x \ 0 \ csqrt x = sqrt (Re x)" hoelzl@56889: by (simp add: complex_eq_iff norm_complex_def) hoelzl@56889: hoelzl@56889: lemma csqrt_of_real_nonpos [simp]: "Im x = 0 \ Re x \ 0 \ csqrt x = \ * sqrt \Re x\" hoelzl@56889: by (simp add: complex_eq_iff norm_complex_def) hoelzl@56889: hoelzl@56889: lemma csqrt_0 [simp]: "csqrt 0 = 0" hoelzl@56889: by simp hoelzl@56889: hoelzl@56889: lemma csqrt_1 [simp]: "csqrt 1 = 1" hoelzl@56889: by simp hoelzl@56889: hoelzl@56889: lemma csqrt_ii [simp]: "csqrt \ = (1 + \) / sqrt 2" hoelzl@56889: by (simp add: complex_eq_iff Re_divide Im_divide real_sqrt_divide real_div_sqrt) huffman@44844: hoelzl@56889: lemma power2_csqrt[algebra]: "(csqrt z)\<^sup>2 = z" hoelzl@56889: proof cases hoelzl@56889: assume "Im z = 0" then show ?thesis hoelzl@56889: using real_sqrt_pow2[of "Re z"] real_sqrt_pow2[of "- Re z"] hoelzl@56889: by (cases "0::real" "Re z" rule: linorder_cases) hoelzl@56889: (simp_all add: complex_eq_iff Re_power2 Im_power2 power2_eq_square cmod_eq_Re) hoelzl@56889: next hoelzl@56889: assume "Im z \ 0" hoelzl@56889: moreover hoelzl@56889: have "cmod z * cmod z - Re z * Re z = Im z * Im z" hoelzl@56889: by (simp add: norm_complex_def power2_eq_square) hoelzl@56889: moreover hoelzl@56889: have "\Re z\ \ cmod z" hoelzl@56889: by (simp add: norm_complex_def) hoelzl@56889: ultimately show ?thesis hoelzl@56889: by (simp add: Re_power2 Im_power2 complex_eq_iff real_sgn_eq hoelzl@56889: field_simps real_sqrt_mult[symmetric] real_sqrt_divide) hoelzl@56889: qed hoelzl@56889: hoelzl@56889: lemma csqrt_eq_0 [simp]: "csqrt z = 0 \ z = 0" hoelzl@56889: by auto (metis power2_csqrt power_eq_0_iff) hoelzl@56889: hoelzl@56889: lemma csqrt_eq_1 [simp]: "csqrt z = 1 \ z = 1" hoelzl@56889: by auto (metis power2_csqrt power2_eq_1_iff) hoelzl@56889: hoelzl@56889: lemma csqrt_principal: "0 < Re (csqrt z) \ Re (csqrt z) = 0 \ 0 \ Im (csqrt z)" hoelzl@56889: by (auto simp add: not_less cmod_plus_Re_le_0_iff Im_eq_0) hoelzl@56889: hoelzl@56889: lemma Re_csqrt: "0 \ Re (csqrt z)" hoelzl@56889: by (metis csqrt_principal le_less) hoelzl@56889: hoelzl@56889: lemma csqrt_square: hoelzl@56889: assumes "0 < Re b \ (Re b = 0 \ 0 \ Im b)" hoelzl@56889: shows "csqrt (b^2) = b" hoelzl@56889: proof - hoelzl@56889: have "csqrt (b^2) = b \ csqrt (b^2) = - b" hoelzl@56889: unfolding power2_eq_iff[symmetric] by (simp add: power2_csqrt) hoelzl@56889: moreover have "csqrt (b^2) \ -b \ b = 0" hoelzl@56889: using csqrt_principal[of "b ^ 2"] assms by (intro disjCI notI) (auto simp: complex_eq_iff) hoelzl@56889: ultimately show ?thesis hoelzl@56889: by auto hoelzl@56889: qed hoelzl@56889: hoelzl@56889: lemma csqrt_minus [simp]: hoelzl@56889: assumes "Im x < 0 \ (Im x = 0 \ 0 \ Re x)" hoelzl@56889: shows "csqrt (- x) = \ * csqrt x" hoelzl@56889: proof - hoelzl@56889: have "csqrt ((\ * csqrt x)^2) = \ * csqrt x" hoelzl@56889: proof (rule csqrt_square) hoelzl@56889: have "Im (csqrt x) \ 0" hoelzl@56889: using assms by (auto simp add: cmod_eq_Re mult_le_0_iff field_simps complex_Re_le_cmod) hoelzl@56889: then show "0 < Re (\ * csqrt x) \ Re (\ * csqrt x) = 0 \ 0 \ Im (\ * csqrt x)" hoelzl@56889: by (auto simp add: Re_csqrt simp del: csqrt.simps) hoelzl@56889: qed hoelzl@56889: also have "(\ * csqrt x)^2 = - x" hoelzl@56889: by (simp add: power2_csqrt power_mult_distrib) hoelzl@56889: finally show ?thesis . hoelzl@56889: qed huffman@44844: huffman@44065: text {* Legacy theorem names *} huffman@44065: huffman@44065: lemmas expand_complex_eq = complex_eq_iff huffman@44065: lemmas complex_Re_Im_cancel_iff = complex_eq_iff huffman@44065: lemmas complex_equality = complex_eqI hoelzl@56889: lemmas cmod_def = norm_complex_def hoelzl@56889: lemmas complex_norm_def = norm_complex_def hoelzl@56889: lemmas complex_divide_def = divide_complex_def hoelzl@56889: hoelzl@56889: lemma legacy_Complex_simps: hoelzl@56889: shows Complex_eq_0: "Complex a b = 0 \ a = 0 \ b = 0" hoelzl@56889: and complex_add: "Complex a b + Complex c d = Complex (a + c) (b + d)" hoelzl@56889: and complex_minus: "- (Complex a b) = Complex (- a) (- b)" hoelzl@56889: and complex_diff: "Complex a b - Complex c d = Complex (a - c) (b - d)" hoelzl@56889: and Complex_eq_1: "Complex a b = 1 \ a = 1 \ b = 0" hoelzl@56889: and Complex_eq_neg_1: "Complex a b = - 1 \ a = - 1 \ b = 0" hoelzl@56889: and complex_mult: "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)" hoelzl@56889: and complex_inverse: "inverse (Complex a b) = Complex (a / (a\<^sup>2 + b\<^sup>2)) (- b / (a\<^sup>2 + b\<^sup>2))" hoelzl@56889: and Complex_eq_numeral: "Complex a b = numeral w \ a = numeral w \ b = 0" hoelzl@56889: and Complex_eq_neg_numeral: "Complex a b = - numeral w \ a = - numeral w \ b = 0" hoelzl@56889: and complex_scaleR: "scaleR r (Complex a b) = Complex (r * a) (r * b)" hoelzl@56889: and Complex_eq_i: "(Complex x y = ii) = (x = 0 \ y = 1)" hoelzl@56889: and i_mult_Complex: "ii * Complex a b = Complex (- b) a" hoelzl@56889: and Complex_mult_i: "Complex a b * ii = Complex (- b) a" hoelzl@56889: and i_complex_of_real: "ii * complex_of_real r = Complex 0 r" hoelzl@56889: and complex_of_real_i: "complex_of_real r * ii = Complex 0 r" hoelzl@56889: and Complex_add_complex_of_real: "Complex x y + complex_of_real r = Complex (x+r) y" hoelzl@56889: and complex_of_real_add_Complex: "complex_of_real r + Complex x y = Complex (r+x) y" hoelzl@56889: and Complex_mult_complex_of_real: "Complex x y * complex_of_real r = Complex (x*r) (y*r)" hoelzl@56889: and complex_of_real_mult_Complex: "complex_of_real r * Complex x y = Complex (r*x) (r*y)" hoelzl@56889: and complex_eq_cancel_iff2: "(Complex x y = complex_of_real xa) = (x = xa & y = 0)" hoelzl@56889: and complex_cn: "cnj (Complex a b) = Complex a (- b)" hoelzl@56889: and Complex_setsum': "setsum (%x. Complex (f x) 0) s = Complex (setsum f s) 0" hoelzl@56889: and Complex_setsum: "Complex (setsum f s) 0 = setsum (%x. Complex (f x) 0) s" hoelzl@56889: and complex_of_real_def: "complex_of_real r = Complex r 0" hoelzl@56889: and complex_norm: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)" hoelzl@56889: by (simp_all add: norm_complex_def field_simps complex_eq_iff Re_divide Im_divide del: Complex_eq) hoelzl@56889: hoelzl@56889: lemma Complex_in_Reals: "Complex x 0 \ \" hoelzl@56889: by (metis Reals_of_real complex_of_real_def) huffman@44065: paulson@13957: end