kleing@24332: (* kleing@24332: ID: $Id$ kleing@24332: Author: Brian Huffman kleing@24332: kleing@24332: Numeral Syntax for Types kleing@24332: *) kleing@24332: kleing@24332: header "Numeral Syntax for Types" kleing@24332: kleing@24332: theory Numeral_Type kleing@24332: imports Infinite_Set kleing@24332: begin kleing@24332: kleing@24332: subsection {* Preliminary lemmas *} kleing@24332: (* These should be moved elsewhere *) kleing@24332: kleing@24332: lemma inj_Inl [simp]: "inj_on Inl A" kleing@24332: by (rule inj_onI, simp) kleing@24332: kleing@24332: lemma inj_Inr [simp]: "inj_on Inr A" kleing@24332: by (rule inj_onI, simp) kleing@24332: kleing@24332: lemma inj_Some [simp]: "inj_on Some A" kleing@24332: by (rule inj_onI, simp) kleing@24332: kleing@24332: lemma card_Plus: kleing@24332: "[| finite A; finite B |] ==> card (A <+> B) = card A + card B" kleing@24332: unfolding Plus_def kleing@24332: apply (subgoal_tac "Inl ` A \ Inr ` B = {}") kleing@24332: apply (simp add: card_Un_disjoint card_image) kleing@24332: apply fast kleing@24332: done kleing@24332: kleing@24332: lemma (in type_definition) univ: kleing@24332: "UNIV = Abs ` A" kleing@24332: proof kleing@24332: show "Abs ` A \ UNIV" by (rule subset_UNIV) kleing@24332: show "UNIV \ Abs ` A" kleing@24332: proof kleing@24332: fix x :: 'b kleing@24332: have "x = Abs (Rep x)" by (rule Rep_inverse [symmetric]) kleing@24332: moreover have "Rep x \ A" by (rule Rep) kleing@24332: ultimately show "x \ Abs ` A" by (rule image_eqI) kleing@24332: qed kleing@24332: qed kleing@24332: kleing@24332: lemma (in type_definition) card: "card (UNIV :: 'b set) = card A" kleing@24332: by (simp add: univ card_image inj_on_def Abs_inject) kleing@24332: kleing@24332: kleing@24332: subsection {* Cardinalities of types *} kleing@24332: kleing@24332: syntax "_type_card" :: "type => nat" ("(1CARD/(1'(_')))") kleing@24332: kleing@24332: translations "CARD(t)" => "card (UNIV::t set)" kleing@24332: kleing@24332: lemma card_unit: "CARD(unit) = 1" kleing@24332: unfolding univ_unit by simp kleing@24332: kleing@24332: lemma card_bool: "CARD(bool) = 2" kleing@24332: unfolding univ_bool by simp kleing@24332: kleing@24332: lemma card_prod: "CARD('a::finite \ 'b::finite) = CARD('a) * CARD('b)" kleing@24332: unfolding univ_prod by (simp only: card_cartesian_product) kleing@24332: kleing@24332: lemma card_sum: "CARD('a::finite + 'b::finite) = CARD('a) + CARD('b)" kleing@24332: unfolding univ_sum by (simp only: finite card_Plus) kleing@24332: kleing@24332: lemma card_option: "CARD('a::finite option) = Suc CARD('a)" kleing@24332: unfolding univ_option kleing@24332: apply (subgoal_tac "(None::'a option) \ range Some") kleing@24332: apply (simp add: finite card_image) kleing@24332: apply fast kleing@24332: done kleing@24332: kleing@24332: lemma card_set: "CARD('a::finite set) = 2 ^ CARD('a)" kleing@24332: unfolding univ_set kleing@24332: by (simp only: card_Pow finite numeral_2_eq_2) kleing@24332: kleing@24332: subsection {* Numeral Types *} kleing@24332: huffman@24406: typedef (open) num0 = "UNIV :: nat set" .. kleing@24332: typedef (open) num1 = "UNIV :: unit set" .. kleing@24332: typedef (open) 'a bit0 = "UNIV :: (bool * 'a) set" .. kleing@24332: typedef (open) 'a bit1 = "UNIV :: (bool * 'a) option set" .. kleing@24332: kleing@24332: instance num1 :: finite kleing@24332: proof kleing@24332: show "finite (UNIV::num1 set)" kleing@24332: unfolding type_definition.univ [OF type_definition_num1] kleing@24332: using finite by (rule finite_imageI) kleing@24332: qed kleing@24332: kleing@24332: instance bit0 :: (finite) finite kleing@24332: proof kleing@24332: show "finite (UNIV::'a bit0 set)" kleing@24332: unfolding type_definition.univ [OF type_definition_bit0] kleing@24332: using finite by (rule finite_imageI) kleing@24332: qed kleing@24332: kleing@24332: instance bit1 :: (finite) finite kleing@24332: proof kleing@24332: show "finite (UNIV::'a bit1 set)" kleing@24332: unfolding type_definition.univ [OF type_definition_bit1] kleing@24332: using finite by (rule finite_imageI) kleing@24332: qed kleing@24332: kleing@24332: lemma card_num1: "CARD(num1) = 1" kleing@24332: unfolding type_definition.card [OF type_definition_num1] kleing@24332: by (simp only: card_unit) kleing@24332: kleing@24332: lemma card_bit0: "CARD('a::finite bit0) = 2 * CARD('a)" kleing@24332: unfolding type_definition.card [OF type_definition_bit0] kleing@24332: by (simp only: card_prod card_bool) kleing@24332: kleing@24332: lemma card_bit1: "CARD('a::finite bit1) = Suc (2 * CARD('a))" kleing@24332: unfolding type_definition.card [OF type_definition_bit1] kleing@24332: by (simp only: card_prod card_option card_bool) kleing@24332: huffman@24406: lemma card_num0: "CARD (num0) = 0" huffman@24406: by (simp add: type_definition.card [OF type_definition_num0]) kleing@24332: kleing@24332: lemmas card_univ_simps [simp] = kleing@24332: card_unit kleing@24332: card_bool kleing@24332: card_prod kleing@24332: card_sum kleing@24332: card_option kleing@24332: card_set kleing@24332: card_num1 kleing@24332: card_bit0 kleing@24332: card_bit1 huffman@24406: card_num0 kleing@24332: kleing@24332: subsection {* Syntax *} kleing@24332: kleing@24332: kleing@24332: syntax kleing@24332: "_NumeralType" :: "num_const => type" ("_") kleing@24332: "_NumeralType0" :: type ("0") kleing@24332: "_NumeralType1" :: type ("1") kleing@24332: kleing@24332: translations kleing@24332: "_NumeralType1" == (type) "num1" huffman@24406: "_NumeralType0" == (type) "num0" kleing@24332: kleing@24332: parse_translation {* kleing@24332: let kleing@24332: kleing@24332: val num1_const = Syntax.const "Numeral_Type.num1"; huffman@24406: val num0_const = Syntax.const "Numeral_Type.num0"; kleing@24332: val B0_const = Syntax.const "Numeral_Type.bit0"; kleing@24332: val B1_const = Syntax.const "Numeral_Type.bit1"; kleing@24332: kleing@24332: fun mk_bintype n = kleing@24332: let kleing@24332: fun mk_bit n = if n = 0 then B0_const else B1_const; kleing@24332: fun bin_of n = kleing@24332: if n = 1 then num1_const huffman@24406: else if n = 0 then num0_const kleing@24332: else if n = ~1 then raise TERM ("negative type numeral", []) kleing@24332: else kleing@24332: let val (q, r) = IntInf.divMod (n, 2); kleing@24332: in mk_bit r $ bin_of q end; kleing@24332: in bin_of n end; kleing@24332: kleing@24332: fun numeral_tr (*"_NumeralType"*) [Const (str, _)] = kleing@24332: mk_bintype (valOf (IntInf.fromString str)) kleing@24332: | numeral_tr (*"_NumeralType"*) ts = raise TERM ("numeral_tr", ts); kleing@24332: kleing@24332: in [("_NumeralType", numeral_tr)] end; kleing@24332: *} kleing@24332: kleing@24332: print_translation {* kleing@24332: let kleing@24332: fun int_of [] = 0 kleing@24332: | int_of (b :: bs) = IntInf.fromInt b + (2 * int_of bs); kleing@24332: huffman@24406: fun bin_of (Const ("num0", _)) = [] kleing@24332: | bin_of (Const ("num1", _)) = [1] kleing@24332: | bin_of (Const ("bit0", _) $ bs) = 0 :: bin_of bs kleing@24332: | bin_of (Const ("bit1", _) $ bs) = 1 :: bin_of bs kleing@24332: | bin_of t = raise TERM("bin_of", [t]); kleing@24332: kleing@24332: fun bit_tr' b [t] = kleing@24332: let kleing@24332: val rev_digs = b :: bin_of t handle TERM _ => raise Match kleing@24332: val i = int_of rev_digs; kleing@24332: val num = IntInf.toString (IntInf.abs i); kleing@24332: in kleing@24332: Syntax.const "_NumeralType" $ Syntax.free num kleing@24332: end kleing@24332: | bit_tr' b _ = raise Match; kleing@24332: kleing@24332: in [("bit0", bit_tr' 0), ("bit1", bit_tr' 1)] end; kleing@24332: *} kleing@24332: kleing@24332: kleing@24332: subsection {* Classes with at values least 1 and 2 *} kleing@24332: kleing@24332: text {* Class finite already captures "at least 1" *} kleing@24332: kleing@24332: lemma zero_less_card_finite: kleing@24332: "0 < CARD('a::finite)" kleing@24332: proof (cases "CARD('a::finite) = 0") kleing@24332: case False thus ?thesis by (simp del: card_0_eq) kleing@24332: next kleing@24332: case True kleing@24332: thus ?thesis by (simp add: finite) kleing@24332: qed kleing@24332: kleing@24332: lemma one_le_card_finite: kleing@24332: "Suc 0 <= CARD('a::finite)" kleing@24332: by (simp add: less_Suc_eq_le [symmetric] zero_less_card_finite) kleing@24332: kleing@24332: kleing@24332: text {* Class for cardinality "at least 2" *} kleing@24332: kleing@24332: class card2 = finite + kleing@24332: assumes two_le_card: "2 <= CARD('a)" kleing@24332: kleing@24332: lemma one_less_card: "Suc 0 < CARD('a::card2)" kleing@24332: using two_le_card [where 'a='a] by simp kleing@24332: kleing@24332: instance bit0 :: (finite) card2 kleing@24332: by intro_classes (simp add: one_le_card_finite) kleing@24332: kleing@24332: instance bit1 :: (finite) card2 kleing@24332: by intro_classes (simp add: one_le_card_finite) kleing@24332: kleing@24332: subsection {* Examples *} kleing@24332: kleing@24332: term "TYPE(10)" kleing@24332: kleing@24332: lemma "CARD(0) = 0" by simp kleing@24332: lemma "CARD(17) = 17" by simp kleing@24332: kleing@24332: end