berghofe@13876: (* Title: HOL/Integ/Presburger.thy berghofe@13876: ID: $Id$ berghofe@13876: Author: Amine Chaieb, Tobias Nipkow and Stefan Berghofer, TU Muenchen berghofe@13876: License: GPL (GNU GENERAL PUBLIC LICENSE) berghofe@13876: berghofe@13876: File containing necessary theorems for the proof berghofe@13876: generation for Cooper Algorithm berghofe@13876: *) berghofe@13876: wenzelm@14577: header {* Presburger Arithmetic: Cooper Algorithm *} wenzelm@14577: paulson@14485: theory Presburger = NatSimprocs + SetInterval berghofe@13876: files berghofe@13876: ("cooper_dec.ML") berghofe@13876: ("cooper_proof.ML") berghofe@13876: ("qelim.ML") berghofe@13876: ("presburger.ML"): berghofe@13876: wenzelm@14577: text {* Theorem for unitifying the coeffitients of @{text x} in an existential formula*} berghofe@13876: berghofe@13876: theorem unity_coeff_ex: "(\x::int. P (l * x)) = (\x. l dvd (1*x+0) \ P x)" berghofe@13876: apply (rule iffI) berghofe@13876: apply (erule exE) berghofe@13876: apply (rule_tac x = "l * x" in exI) berghofe@13876: apply simp berghofe@13876: apply (erule exE) berghofe@13876: apply (erule conjE) berghofe@13876: apply (erule dvdE) berghofe@13876: apply (rule_tac x = k in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma uminus_dvd_conv: "(d dvd (t::int)) = (-d dvd t)" berghofe@13876: apply(unfold dvd_def) berghofe@13876: apply(rule iffI) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac k) berghofe@13876: apply(rule_tac x = "-k" in exI) berghofe@13876: apply simp berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac k) berghofe@13876: apply(rule_tac x = "-k" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma uminus_dvd_conv': "(d dvd (t::int)) = (d dvd -t)" berghofe@13876: apply(unfold dvd_def) berghofe@13876: apply(rule iffI) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rule_tac x = "-k" in exI) berghofe@13876: apply simp berghofe@13876: apply(clarsimp) berghofe@13876: apply(rule_tac x = "-k" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: wenzelm@14577: text {*Theorems for the combination of proofs of the equality of @{text P} and @{text P_m} for integers @{text x} less than some integer @{text z}.*} berghofe@13876: berghofe@13876: theorem eq_minf_conjI: "\z1::int. \x. x < z1 \ (A1 x = A2 x) \ berghofe@13876: \z2::int. \x. x < z2 \ (B1 x = B2 x) \ berghofe@13876: \z::int. \x. x < z \ ((A1 x \ B1 x) = (A2 x \ B2 x))" berghofe@13876: apply (erule exE)+ berghofe@13876: apply (rule_tac x = "min z1 z2" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: theorem eq_minf_disjI: "\z1::int. \x. x < z1 \ (A1 x = A2 x) \ berghofe@13876: \z2::int. \x. x < z2 \ (B1 x = B2 x) \ berghofe@13876: \z::int. \x. x < z \ ((A1 x \ B1 x) = (A2 x \ B2 x))" berghofe@13876: berghofe@13876: apply (erule exE)+ berghofe@13876: apply (rule_tac x = "min z1 z2" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: wenzelm@14577: text {*Theorems for the combination of proofs of the equality of @{text P} and @{text P_m} for integers @{text x} greather than some integer @{text z}.*} berghofe@13876: berghofe@13876: theorem eq_pinf_conjI: "\z1::int. \x. z1 < x \ (A1 x = A2 x) \ berghofe@13876: \z2::int. \x. z2 < x \ (B1 x = B2 x) \ berghofe@13876: \z::int. \x. z < x \ ((A1 x \ B1 x) = (A2 x \ B2 x))" berghofe@13876: apply (erule exE)+ berghofe@13876: apply (rule_tac x = "max z1 z2" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: theorem eq_pinf_disjI: "\z1::int. \x. z1 < x \ (A1 x = A2 x) \ berghofe@13876: \z2::int. \x. z2 < x \ (B1 x = B2 x) \ berghofe@13876: \z::int. \x. z < x \ ((A1 x \ B1 x) = (A2 x \ B2 x))" berghofe@13876: apply (erule exE)+ berghofe@13876: apply (rule_tac x = "max z1 z2" in exI) berghofe@13876: apply simp berghofe@13876: done wenzelm@14577: wenzelm@14577: text {* wenzelm@14577: \medskip Theorems for the combination of proofs of the modulo @{text wenzelm@14577: D} property for @{text "P plusinfinity"} wenzelm@14577: wenzelm@14577: FIXME: This is THE SAME theorem as for the @{text minusinf} version, wenzelm@14577: but with @{text "+k.."} instead of @{text "-k.."} In the future wenzelm@14577: replace these both with only one. *} berghofe@13876: berghofe@13876: theorem modd_pinf_conjI: "\(x::int) k. A x = A (x+k*d) \ berghofe@13876: \(x::int) k. B x = B (x+k*d) \ berghofe@13876: \(x::int) (k::int). (A x \ B x) = (A (x+k*d) \ B (x+k*d))" berghofe@13876: by simp berghofe@13876: berghofe@13876: theorem modd_pinf_disjI: "\(x::int) k. A x = A (x+k*d) \ berghofe@13876: \(x::int) k. B x = B (x+k*d) \ berghofe@13876: \(x::int) (k::int). (A x \ B x) = (A (x+k*d) \ B (x+k*d))" berghofe@13876: by simp berghofe@13876: wenzelm@14577: text {* wenzelm@14577: This is one of the cases where the simplifed formula is prooved to wenzelm@14577: habe some property (in relation to @{text P_m}) but we need to prove wenzelm@14577: the property for the original formula (@{text P_m}) wenzelm@14577: wenzelm@14577: FIXME: This is exaclty the same thm as for @{text minusinf}. *} wenzelm@14577: berghofe@13876: lemma pinf_simp_eq: "ALL x. P(x) = Q(x) ==> (EX (x::int). P(x)) --> (EX (x::int). F(x)) ==> (EX (x::int). Q(x)) --> (EX (x::int). F(x)) " wenzelm@14577: by blast berghofe@13876: berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorems for the combination of proofs of the modulo @{text D} wenzelm@14577: property for @{text "P minusinfinity"} *} berghofe@13876: berghofe@13876: theorem modd_minf_conjI: "\(x::int) k. A x = A (x-k*d) \ berghofe@13876: \(x::int) k. B x = B (x-k*d) \ berghofe@13876: \(x::int) (k::int). (A x \ B x) = (A (x-k*d) \ B (x-k*d))" berghofe@13876: by simp berghofe@13876: berghofe@13876: theorem modd_minf_disjI: "\(x::int) k. A x = A (x-k*d) \ berghofe@13876: \(x::int) k. B x = B (x-k*d) \ berghofe@13876: \(x::int) (k::int). (A x \ B x) = (A (x-k*d) \ B (x-k*d))" berghofe@13876: by simp berghofe@13876: wenzelm@14577: text {* wenzelm@14577: This is one of the cases where the simplifed formula is prooved to wenzelm@14577: have some property (in relation to @{text P_m}) but we need to wenzelm@14577: prove the property for the original formula (@{text P_m}). *} berghofe@13876: berghofe@13876: lemma minf_simp_eq: "ALL x. P(x) = Q(x) ==> (EX (x::int). P(x)) --> (EX (x::int). F(x)) ==> (EX (x::int). Q(x)) --> (EX (x::int). F(x)) " wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* wenzelm@14577: Theorem needed for proving at runtime divide properties using the wenzelm@14577: arithmetic tactic (which knows only about modulo = 0). *} berghofe@13876: berghofe@13876: lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))" wenzelm@14577: by(simp add:dvd_def zmod_eq_0_iff) berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorems used for the combination of proof for the wenzelm@14577: backwards direction of Cooper's Theorem. They rely exclusively on wenzelm@14577: Predicate calculus.*} berghofe@13876: berghofe@13876: lemma not_ast_p_disjI: "(ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P1(x) --> P1(x + d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P2(x) --> P2(x + d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->(P1(x) \ P2(x)) --> (P1(x + d) \ P2(x + d))) " wenzelm@14577: by blast berghofe@13876: berghofe@13876: berghofe@13876: lemma not_ast_p_conjI: "(ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a- j)) --> P1(x) --> P1(x + d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P2(x) --> P2(x + d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->(P1(x) \ P2(x)) --> (P1(x + d) berghofe@13876: \ P2(x + d))) " wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma not_ast_p_Q_elim: " berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->P(x) --> P(x + d)) berghofe@13876: ==> ( P = Q ) berghofe@13876: ==> (ALL x. ~(EX (j::int) : {1..d}. EX (a::int) : A. P(a - j)) -->P(x) --> P(x + d))" wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorems used for the combination of proof for the wenzelm@14577: backwards direction of Cooper's Theorem. They rely exclusively on wenzelm@14577: Predicate calculus.*} berghofe@13876: berghofe@13876: lemma not_bst_p_disjI: "(ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P1(x) --> P1(x - d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P2(x) --> P2(x - d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->(P1(x) \ P2(x)) --> (P1(x - d) berghofe@13876: \ P2(x-d))) " wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma not_bst_p_conjI: "(ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P1(x) --> P1(x - d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P2(x) --> P2(x - d)) berghofe@13876: ==> berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->(P1(x) \ P2(x)) --> (P1(x - d) berghofe@13876: \ P2(x-d))) " wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma not_bst_p_Q_elim: " berghofe@13876: (ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->P(x) --> P(x - d)) berghofe@13876: ==> ( P = Q ) berghofe@13876: ==> (ALL x. ~(EX (j::int) : {1..d}. EX (b::int) : B. P(b+j)) -->P(x) --> P(x - d))" wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* \medskip This is the first direction of Cooper's Theorem. *} berghofe@13876: lemma cooper_thm: "(R --> (EX x::int. P x)) ==> (Q -->(EX x::int. P x )) ==> ((R|Q) --> (EX x::int. P x )) " wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip The full Cooper's Theorem in its equivalence Form. Given wenzelm@14577: the premises it is trivial too, it relies exclusively on prediacte calculus.*} berghofe@13876: lemma cooper_eq_thm: "(R --> (EX x::int. P x)) ==> (Q -->(EX x::int. P x )) ==> ((~Q) berghofe@13876: --> (EX x::int. P x ) --> R) ==> (EX x::int. P x) = R|Q " wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Some of the atomic theorems generated each time the atom wenzelm@14577: does not depend on @{text x}, they are trivial.*} berghofe@13876: berghofe@13876: lemma fm_eq_minf: "EX z::int. ALL x. x < z --> (P = P) " wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma fm_modd_minf: "ALL (x::int). ALL (k::int). (P = P)" wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma not_bst_p_fm: "ALL (x::int). Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> fm --> fm" wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma fm_eq_pinf: "EX z::int. ALL x. z < x --> (P = P) " wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* The next two thms are the same as the @{text minusinf} version. *} wenzelm@14577: berghofe@13876: lemma fm_modd_pinf: "ALL (x::int). ALL (k::int). (P = P)" wenzelm@14577: by blast berghofe@13876: berghofe@13876: lemma not_ast_p_fm: "ALL (x::int). Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> fm --> fm" wenzelm@14577: by blast berghofe@13876: wenzelm@14577: text {* Theorems to be deleted from simpset when proving simplified formulaes. *} berghofe@13876: berghofe@13876: lemma P_eqtrue: "(P=True) = P" berghofe@13876: by rules berghofe@13876: berghofe@13876: lemma P_eqfalse: "(P=False) = (~P)" berghofe@13876: by rules berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorems for the generation of the bachwards direction of wenzelm@14577: Cooper's Theorem. berghofe@13876: wenzelm@14577: These are the 6 interesting atomic cases which have to be proved relying on the wenzelm@14577: properties of B-set and the arithmetic and contradiction proofs. *} berghofe@13876: berghofe@13876: lemma not_bst_p_lt: "0 < (d::int) ==> berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ( 0 < -x + a) --> (0 < -(x - d) + a )" wenzelm@14577: by arith berghofe@13876: berghofe@13876: lemma not_bst_p_gt: "\ (g::int) \ B; g = -a \ \ berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> (0 < (x) + a) --> ( 0 < (x - d) + a)" berghofe@13876: apply clarsimp berghofe@13876: apply(rule ccontr) berghofe@13876: apply(drule_tac x = "x+a" in bspec) berghofe@13876: apply(simp add:atLeastAtMost_iff) berghofe@13876: apply(drule_tac x = "-a" in bspec) berghofe@13876: apply assumption berghofe@13876: apply(simp) berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_bst_p_eq: "\ 0 < d; (g::int) \ B; g = -a - 1 \ \ berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> (0 = x + a) --> (0 = (x - d) + a )" berghofe@13876: apply clarsimp berghofe@13876: apply(subgoal_tac "x = -a") berghofe@13876: prefer 2 apply arith berghofe@13876: apply(drule_tac x = "1" in bspec) berghofe@13876: apply(simp add:atLeastAtMost_iff) berghofe@13876: apply(drule_tac x = "-a- 1" in bspec) berghofe@13876: apply assumption berghofe@13876: apply(simp) berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: lemma not_bst_p_ne: "\ 0 < d; (g::int) \ B; g = -a \ \ berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ~(0 = x + a) --> ~(0 = (x - d) + a)" berghofe@13876: apply clarsimp berghofe@13876: apply(subgoal_tac "x = -a+d") berghofe@13876: prefer 2 apply arith berghofe@13876: apply(drule_tac x = "d" in bspec) berghofe@13876: apply(simp add:atLeastAtMost_iff) berghofe@13876: apply(drule_tac x = "-a" in bspec) berghofe@13876: apply assumption berghofe@13876: apply(simp) berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: lemma not_bst_p_dvd: "(d1::int) dvd d ==> berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> d1 dvd (x + a) --> d1 dvd ((x - d) + a )" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rename_tac m) berghofe@13876: apply(rule_tac x = "m - k" in exI) berghofe@13876: apply(simp add:int_distrib) berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_bst_p_ndvd: "(d1::int) dvd d ==> berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ~(d1 dvd (x + a)) --> ~(d1 dvd ((x - d) + a ))" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rename_tac m) berghofe@13876: apply(erule_tac x = "m + k" in allE) berghofe@13876: apply(simp add:int_distrib) berghofe@13876: done berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorems for the generation of the bachwards direction of wenzelm@14577: Cooper's Theorem. berghofe@13876: wenzelm@14577: These are the 6 interesting atomic cases which have to be proved wenzelm@14577: relying on the properties of A-set ant the arithmetic and wenzelm@14577: contradiction proofs. *} berghofe@13876: berghofe@13876: lemma not_ast_p_gt: "0 < (d::int) ==> berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ( 0 < x + t) --> (0 < (x + d) + t )" wenzelm@14577: by arith berghofe@13876: berghofe@13876: lemma not_ast_p_lt: "\0 < d ;(t::int) \ A \ \ berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> (0 < -x + t) --> ( 0 < -(x + d) + t)" berghofe@13876: apply clarsimp berghofe@13876: apply (rule ccontr) berghofe@13876: apply (drule_tac x = "t-x" in bspec) berghofe@13876: apply simp berghofe@13876: apply (drule_tac x = "t" in bspec) berghofe@13876: apply assumption berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_ast_p_eq: "\ 0 < d; (g::int) \ A; g = -t + 1 \ \ berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> (0 = x + t) --> (0 = (x + d) + t )" berghofe@13876: apply clarsimp berghofe@13876: apply (drule_tac x="1" in bspec) berghofe@13876: apply simp berghofe@13876: apply (drule_tac x="- t + 1" in bspec) berghofe@13876: apply assumption berghofe@13876: apply(subgoal_tac "x = -t") berghofe@13876: prefer 2 apply arith berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_ast_p_ne: "\ 0 < d; (g::int) \ A; g = -t \ \ berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ~(0 = x + t) --> ~(0 = (x + d) + t)" berghofe@13876: apply clarsimp berghofe@13876: apply (subgoal_tac "x = -t-d") berghofe@13876: prefer 2 apply arith berghofe@13876: apply (drule_tac x = "d" in bspec) berghofe@13876: apply simp berghofe@13876: apply (drule_tac x = "-t" in bspec) berghofe@13876: apply assumption berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_ast_p_dvd: "(d1::int) dvd d ==> berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> d1 dvd (x + t) --> d1 dvd ((x + d) + t )" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rename_tac m) berghofe@13876: apply(rule_tac x = "m + k" in exI) berghofe@13876: apply(simp add:int_distrib) berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_ast_p_ndvd: "(d1::int) dvd d ==> berghofe@13876: ALL x. Q(x::int) \ ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ~(d1 dvd (x + t)) --> ~(d1 dvd ((x + d) + t ))" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rename_tac m) berghofe@13876: apply(erule_tac x = "m - k" in allE) berghofe@13876: apply(simp add:int_distrib) berghofe@13876: done berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip These are the atomic cases for the proof generation for the wenzelm@14577: modulo @{text D} property for @{text "P plusinfinity"} berghofe@13876: wenzelm@14577: They are fully based on arithmetics. *} berghofe@13876: berghofe@13876: lemma dvd_modd_pinf: "((d::int) dvd d1) ==> berghofe@13876: (ALL (x::int). ALL (k::int). (((d::int) dvd (x + t)) = (d dvd (x+k*d1 + t))))" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rule iffI) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(rule_tac x = "m + n*k" in exI) berghofe@13876: apply(simp add:int_distrib) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(rule_tac x = "m - n*k" in exI) paulson@14271: apply(simp add:int_distrib mult_ac) berghofe@13876: done berghofe@13876: berghofe@13876: lemma not_dvd_modd_pinf: "((d::int) dvd d1) ==> berghofe@13876: (ALL (x::int). ALL k. (~((d::int) dvd (x + t))) = (~(d dvd (x+k*d1 + t))))" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rule iffI) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(erule_tac x = "m - n*k" in allE) paulson@14271: apply(simp add:int_distrib mult_ac) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(erule_tac x = "m + n*k" in allE) paulson@14271: apply(simp add:int_distrib mult_ac) berghofe@13876: done berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip These are the atomic cases for the proof generation for the wenzelm@14577: equivalence of @{text P} and @{text "P plusinfinity"} for integers wenzelm@14577: @{text x} greater than some integer @{text z}. wenzelm@14577: wenzelm@14577: They are fully based on arithmetics. *} berghofe@13876: berghofe@13876: lemma eq_eq_pinf: "EX z::int. ALL x. z < x --> (( 0 = x +t ) = False )" berghofe@13876: apply(rule_tac x = "-t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma neq_eq_pinf: "EX z::int. ALL x. z < x --> ((~( 0 = x +t )) = True )" berghofe@13876: apply(rule_tac x = "-t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma le_eq_pinf: "EX z::int. ALL x. z < x --> ( 0 < x +t = True )" berghofe@13876: apply(rule_tac x = "-t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma len_eq_pinf: "EX z::int. ALL x. z < x --> (0 < -x +t = False )" berghofe@13876: apply(rule_tac x = "t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma dvd_eq_pinf: "EX z::int. ALL x. z < x --> ((d dvd (x + t)) = (d dvd (x + t))) " wenzelm@14577: by simp berghofe@13876: berghofe@13876: lemma not_dvd_eq_pinf: "EX z::int. ALL x. z < x --> ((~(d dvd (x + t))) = (~(d dvd (x + t)))) " wenzelm@14577: by simp berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip These are the atomic cases for the proof generation for the wenzelm@14577: modulo @{text D} property for @{text "P minusinfinity"}. wenzelm@14577: wenzelm@14577: They are fully based on arithmetics. *} berghofe@13876: berghofe@13876: lemma dvd_modd_minf: "((d::int) dvd d1) ==> berghofe@13876: (ALL (x::int). ALL (k::int). (((d::int) dvd (x + t)) = (d dvd (x-k*d1 + t))))" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rule iffI) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(rule_tac x = "m - n*k" in exI) berghofe@13876: apply(simp add:int_distrib) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(rule_tac x = "m + n*k" in exI) paulson@14271: apply(simp add:int_distrib mult_ac) berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: lemma not_dvd_modd_minf: "((d::int) dvd d1) ==> berghofe@13876: (ALL (x::int). ALL k. (~((d::int) dvd (x + t))) = (~(d dvd (x-k*d1 + t))))" berghofe@13876: apply(clarsimp simp add:dvd_def) berghofe@13876: apply(rule iffI) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(erule_tac x = "m + n*k" in allE) paulson@14271: apply(simp add:int_distrib mult_ac) berghofe@13876: apply(clarsimp) berghofe@13876: apply(rename_tac n m) berghofe@13876: apply(erule_tac x = "m - n*k" in allE) paulson@14271: apply(simp add:int_distrib mult_ac) berghofe@13876: done berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip These are the atomic cases for the proof generation for the wenzelm@14577: equivalence of @{text P} and @{text "P minusinfinity"} for integers wenzelm@14577: @{text x} less than some integer @{text z}. berghofe@13876: wenzelm@14577: They are fully based on arithmetics. *} berghofe@13876: berghofe@13876: lemma eq_eq_minf: "EX z::int. ALL x. x < z --> (( 0 = x +t ) = False )" berghofe@13876: apply(rule_tac x = "-t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma neq_eq_minf: "EX z::int. ALL x. x < z --> ((~( 0 = x +t )) = True )" berghofe@13876: apply(rule_tac x = "-t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma le_eq_minf: "EX z::int. ALL x. x < z --> ( 0 < x +t = False )" berghofe@13876: apply(rule_tac x = "-t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: berghofe@13876: lemma len_eq_minf: "EX z::int. ALL x. x < z --> (0 < -x +t = True )" berghofe@13876: apply(rule_tac x = "t" in exI) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: lemma dvd_eq_minf: "EX z::int. ALL x. x < z --> ((d dvd (x + t)) = (d dvd (x + t))) " wenzelm@14577: by simp berghofe@13876: berghofe@13876: lemma not_dvd_eq_minf: "EX z::int. ALL x. x < z --> ((~(d dvd (x + t))) = (~(d dvd (x + t)))) " wenzelm@14577: by simp berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip This Theorem combines whithnesses about @{text "P wenzelm@14577: minusinfinity"} to show one component of the equivalence proof for wenzelm@14577: Cooper's Theorem. berghofe@13876: wenzelm@14577: FIXME: remove once they are part of the distribution. *} wenzelm@14577: berghofe@13876: theorem int_ge_induct[consumes 1,case_names base step]: berghofe@13876: assumes ge: "k \ (i::int)" and berghofe@13876: base: "P(k)" and berghofe@13876: step: "\i. \k \ i; P i\ \ P(i+1)" berghofe@13876: shows "P i" berghofe@13876: proof - berghofe@13876: { fix n have "\i::int. n = nat(i-k) \ k <= i \ P i" berghofe@13876: proof (induct n) berghofe@13876: case 0 berghofe@13876: hence "i = k" by arith berghofe@13876: thus "P i" using base by simp berghofe@13876: next berghofe@13876: case (Suc n) berghofe@13876: hence "n = nat((i - 1) - k)" by arith berghofe@13876: moreover berghofe@13876: have ki1: "k \ i - 1" using Suc.prems by arith berghofe@13876: ultimately berghofe@13876: have "P(i - 1)" by(rule Suc.hyps) berghofe@13876: from step[OF ki1 this] show ?case by simp berghofe@13876: qed berghofe@13876: } berghofe@13876: from this ge show ?thesis by fast berghofe@13876: qed berghofe@13876: berghofe@13876: theorem int_gr_induct[consumes 1,case_names base step]: berghofe@13876: assumes gr: "k < (i::int)" and berghofe@13876: base: "P(k+1)" and berghofe@13876: step: "\i. \k < i; P i\ \ P(i+1)" berghofe@13876: shows "P i" berghofe@13876: apply(rule int_ge_induct[of "k + 1"]) berghofe@13876: using gr apply arith berghofe@13876: apply(rule base) berghofe@13876: apply(rule step) berghofe@13876: apply simp+ berghofe@13876: done berghofe@13876: berghofe@13876: lemma decr_lemma: "0 < (d::int) \ x - (abs(x-z)+1) * d < z" berghofe@13876: apply(induct rule: int_gr_induct) berghofe@13876: apply simp berghofe@13876: apply arith berghofe@13876: apply (simp add:int_distrib) berghofe@13876: apply arith berghofe@13876: done berghofe@13876: berghofe@13876: lemma incr_lemma: "0 < (d::int) \ z < x + (abs(x-z)+1) * d" berghofe@13876: apply(induct rule: int_gr_induct) berghofe@13876: apply simp berghofe@13876: apply arith berghofe@13876: apply (simp add:int_distrib) berghofe@13876: apply arith berghofe@13876: done berghofe@13876: berghofe@13876: lemma minusinfinity: berghofe@13876: assumes "0 < d" and berghofe@13876: P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and berghofe@13876: ePeqP1: "EX z::int. ALL x. x < z \ (P x = P1 x)" berghofe@13876: shows "(EX x. P1 x) \ (EX x. P x)" berghofe@13876: proof berghofe@13876: assume eP1: "EX x. P1 x" berghofe@13876: then obtain x where P1: "P1 x" .. berghofe@13876: from ePeqP1 obtain z where P1eqP: "ALL x. x < z \ (P x = P1 x)" .. berghofe@13876: let ?w = "x - (abs(x-z)+1) * d" berghofe@13876: show "EX x. P x" berghofe@13876: proof berghofe@13876: have w: "?w < z" by(rule decr_lemma) berghofe@13876: have "P1 x = P1 ?w" using P1eqP1 by blast berghofe@13876: also have "\ = P(?w)" using w P1eqP by blast berghofe@13876: finally show "P ?w" using P1 by blast berghofe@13876: qed berghofe@13876: qed berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip This Theorem combines whithnesses about @{text "P wenzelm@14577: minusinfinity"} to show one component of the equivalence proof for wenzelm@14577: Cooper's Theorem. *} berghofe@13876: berghofe@13876: lemma plusinfinity: berghofe@13876: assumes "0 < d" and berghofe@13876: P1eqP1: "ALL (x::int) (k::int). P1 x = P1 (x + k * d)" and berghofe@13876: ePeqP1: "EX z::int. ALL x. z < x --> (P x = P1 x)" berghofe@13876: shows "(EX x::int. P1 x) --> (EX x::int. P x)" berghofe@13876: proof berghofe@13876: assume eP1: "EX x. P1 x" berghofe@13876: then obtain x where P1: "P1 x" .. berghofe@13876: from ePeqP1 obtain z where P1eqP: "ALL x. z < x \ (P x = P1 x)" .. berghofe@13876: let ?w = "x + (abs(x-z)+1) * d" berghofe@13876: show "EX x. P x" berghofe@13876: proof berghofe@13876: have w: "z < ?w" by(rule incr_lemma) berghofe@13876: have "P1 x = P1 ?w" using P1eqP1 by blast berghofe@13876: also have "\ = P(?w)" using w P1eqP by blast berghofe@13876: finally show "P ?w" using P1 by blast berghofe@13876: qed berghofe@13876: qed berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorem for periodic function on discrete sets. *} berghofe@13876: berghofe@13876: lemma minf_vee: berghofe@13876: assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)" berghofe@13876: shows "(EX x. P x) = (EX j : {1..d}. P j)" berghofe@13876: (is "?LHS = ?RHS") berghofe@13876: proof berghofe@13876: assume ?LHS berghofe@13876: then obtain x where P: "P x" .. berghofe@13876: have "x mod d = x - (x div d)*d" paulson@14271: by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq) berghofe@13876: hence Pmod: "P x = P(x mod d)" using modd by simp berghofe@13876: show ?RHS berghofe@13876: proof (cases) berghofe@13876: assume "x mod d = 0" berghofe@13876: hence "P 0" using P Pmod by simp berghofe@13876: moreover have "P 0 = P(0 - (-1)*d)" using modd by blast berghofe@13876: ultimately have "P d" by simp berghofe@13876: moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff) berghofe@13876: ultimately show ?RHS .. berghofe@13876: next berghofe@13876: assume not0: "x mod d \ 0" berghofe@13876: have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound) berghofe@13876: moreover have "x mod d : {1..d}" berghofe@13876: proof - berghofe@13876: have "0 \ x mod d" by(rule pos_mod_sign) berghofe@13876: moreover have "x mod d < d" by(rule pos_mod_bound) berghofe@13876: ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff) berghofe@13876: qed berghofe@13876: ultimately show ?RHS .. berghofe@13876: qed berghofe@13876: next berghofe@13876: assume ?RHS thus ?LHS by blast berghofe@13876: qed berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Theorem for periodic function on discrete sets. *} wenzelm@14577: berghofe@13876: lemma pinf_vee: berghofe@13876: assumes dpos: "0 < (d::int)" and modd: "ALL (x::int) (k::int). P x = P (x+k*d)" berghofe@13876: shows "(EX x::int. P x) = (EX (j::int) : {1..d} . P j)" berghofe@13876: (is "?LHS = ?RHS") berghofe@13876: proof berghofe@13876: assume ?LHS berghofe@13876: then obtain x where P: "P x" .. berghofe@13876: have "x mod d = x + (-(x div d))*d" paulson@14271: by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq) berghofe@13876: hence Pmod: "P x = P(x mod d)" using modd by (simp only:) berghofe@13876: show ?RHS berghofe@13876: proof (cases) berghofe@13876: assume "x mod d = 0" berghofe@13876: hence "P 0" using P Pmod by simp berghofe@13876: moreover have "P 0 = P(0 + 1*d)" using modd by blast berghofe@13876: ultimately have "P d" by simp berghofe@13876: moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff) berghofe@13876: ultimately show ?RHS .. berghofe@13876: next berghofe@13876: assume not0: "x mod d \ 0" berghofe@13876: have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound) berghofe@13876: moreover have "x mod d : {1..d}" berghofe@13876: proof - berghofe@13876: have "0 \ x mod d" by(rule pos_mod_sign) berghofe@13876: moreover have "x mod d < d" by(rule pos_mod_bound) berghofe@13876: ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff) berghofe@13876: qed berghofe@13876: ultimately show ?RHS .. berghofe@13876: qed berghofe@13876: next berghofe@13876: assume ?RHS thus ?LHS by blast berghofe@13876: qed berghofe@13876: berghofe@13876: lemma decr_mult_lemma: berghofe@13876: assumes dpos: "(0::int) < d" and berghofe@13876: minus: "ALL x::int. P x \ P(x - d)" and berghofe@13876: knneg: "0 <= k" berghofe@13876: shows "ALL x. P x \ P(x - k*d)" berghofe@13876: using knneg berghofe@13876: proof (induct rule:int_ge_induct) berghofe@13876: case base thus ?case by simp berghofe@13876: next berghofe@13876: case (step i) berghofe@13876: show ?case berghofe@13876: proof berghofe@13876: fix x berghofe@13876: have "P x \ P (x - i * d)" using step.hyps by blast berghofe@13876: also have "\ \ P(x - (i + 1) * d)" berghofe@13876: using minus[THEN spec, of "x - i * d"] paulson@14271: by (simp add:int_distrib Ring_and_Field.diff_diff_eq[symmetric]) berghofe@13876: ultimately show "P x \ P(x - (i + 1) * d)" by blast berghofe@13876: qed berghofe@13876: qed berghofe@13876: berghofe@13876: lemma incr_mult_lemma: berghofe@13876: assumes dpos: "(0::int) < d" and berghofe@13876: plus: "ALL x::int. P x \ P(x + d)" and berghofe@13876: knneg: "0 <= k" berghofe@13876: shows "ALL x. P x \ P(x + k*d)" berghofe@13876: using knneg berghofe@13876: proof (induct rule:int_ge_induct) berghofe@13876: case base thus ?case by simp berghofe@13876: next berghofe@13876: case (step i) berghofe@13876: show ?case berghofe@13876: proof berghofe@13876: fix x berghofe@13876: have "P x \ P (x + i * d)" using step.hyps by blast berghofe@13876: also have "\ \ P(x + (i + 1) * d)" berghofe@13876: using plus[THEN spec, of "x + i * d"] berghofe@13876: by (simp add:int_distrib zadd_ac) berghofe@13876: ultimately show "P x \ P(x + (i + 1) * d)" by blast berghofe@13876: qed berghofe@13876: qed berghofe@13876: berghofe@13876: lemma cpmi_eq: "0 < D \ (EX z::int. ALL x. x < z --> (P x = P1 x)) berghofe@13876: ==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D) berghofe@13876: ==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D)))) berghofe@13876: ==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))" berghofe@13876: apply(rule iffI) berghofe@13876: prefer 2 berghofe@13876: apply(drule minusinfinity) berghofe@13876: apply assumption+ berghofe@13876: apply(fastsimp) berghofe@13876: apply clarsimp berghofe@13876: apply(subgoal_tac "!!k. 0<=k \ !x. P x \ P (x - k*D)") berghofe@13876: apply(frule_tac x = x and z=z in decr_lemma) berghofe@13876: apply(subgoal_tac "P1(x - (\x - z\ + 1) * D)") berghofe@13876: prefer 2 berghofe@13876: apply(subgoal_tac "0 <= (\x - z\ + 1)") berghofe@13876: prefer 2 apply arith berghofe@13876: apply fastsimp berghofe@13876: apply(drule (1) minf_vee) berghofe@13876: apply blast berghofe@13876: apply(blast dest:decr_mult_lemma) berghofe@13876: done berghofe@13876: wenzelm@14577: text {* Cooper Theorem, plus infinity version. *} berghofe@13876: lemma cppi_eq: "0 < D \ (EX z::int. ALL x. z < x --> (P x = P1 x)) berghofe@13876: ==> ALL x.~(EX (j::int) : {1..D}. EX (a::int) : A. P(a - j)) --> P (x) --> P (x + D) berghofe@13876: ==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x+k*D)))) berghofe@13876: ==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (a::int) : A. P (a - j)))" berghofe@13876: apply(rule iffI) berghofe@13876: prefer 2 berghofe@13876: apply(drule plusinfinity) berghofe@13876: apply assumption+ berghofe@13876: apply(fastsimp) berghofe@13876: apply clarsimp berghofe@13876: apply(subgoal_tac "!!k. 0<=k \ !x. P x \ P (x + k*D)") berghofe@13876: apply(frule_tac x = x and z=z in incr_lemma) berghofe@13876: apply(subgoal_tac "P1(x + (\x - z\ + 1) * D)") berghofe@13876: prefer 2 berghofe@13876: apply(subgoal_tac "0 <= (\x - z\ + 1)") berghofe@13876: prefer 2 apply arith berghofe@13876: apply fastsimp berghofe@13876: apply(drule (1) pinf_vee) berghofe@13876: apply blast berghofe@13876: apply(blast dest:incr_mult_lemma) berghofe@13876: done berghofe@13876: berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \bigskip Theorems for the quantifier elminination Functions. *} berghofe@13876: berghofe@13876: lemma qe_ex_conj: "(EX (x::int). A x) = R berghofe@13876: ==> (EX (x::int). P x) = (Q & (EX x::int. A x)) berghofe@13876: ==> (EX (x::int). P x) = (Q & R)" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_ex_nconj: "(EX (x::int). P x) = (True & Q) berghofe@13876: ==> (EX (x::int). P x) = Q" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_conjI: "P1 = P2 ==> Q1 = Q2 ==> (P1 & Q1) = (P2 & Q2)" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_disjI: "P1 = P2 ==> Q1 = Q2 ==> (P1 | Q1) = (P2 | Q2)" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_impI: "P1 = P2 ==> Q1 = Q2 ==> (P1 --> Q1) = (P2 --> Q2)" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_eqI: "P1 = P2 ==> Q1 = Q2 ==> (P1 = Q1) = (P2 = Q2)" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_Not: "P = Q ==> (~P) = (~Q)" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma qe_ALL: "(EX x. ~P x) = R ==> (ALL x. P x) = (~R)" berghofe@13876: by blast berghofe@13876: wenzelm@14577: text {* \bigskip Theorems for proving NNF *} berghofe@13876: berghofe@13876: lemma nnf_im: "((~P) = P1) ==> (Q=Q1) ==> ((P --> Q) = (P1 | Q1))" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma nnf_eq: "((P & Q) = (P1 & Q1)) ==> (((~P) & (~Q)) = (P2 & Q2)) ==> ((P = Q) = ((P1 & Q1)|(P2 & Q2)))" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma nnf_nn: "(P = Q) ==> ((~~P) = Q)" berghofe@13876: by blast berghofe@13876: lemma nnf_ncj: "((~P) = P1) ==> ((~Q) = Q1) ==> ((~(P & Q)) = (P1 | Q1))" berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma nnf_ndj: "((~P) = P1) ==> ((~Q) = Q1) ==> ((~(P | Q)) = (P1 & Q1))" berghofe@13876: by blast berghofe@13876: lemma nnf_nim: "(P = P1) ==> ((~Q) = Q1) ==> ((~(P --> Q)) = (P1 & Q1))" berghofe@13876: by blast berghofe@13876: lemma nnf_neq: "((P & (~Q)) = (P1 & Q1)) ==> (((~P) & Q) = (P2 & Q2)) ==> ((~(P = Q)) = ((P1 & Q1)|(P2 & Q2)))" berghofe@13876: by blast berghofe@13876: lemma nnf_sdj: "((A & (~B)) = (A1 & B1)) ==> ((C & (~D)) = (C1 & D1)) ==> (A = (~C)) ==> ((~((A & B) | (C & D))) = ((A1 & B1) | (C1 & D1)))" berghofe@13876: by blast berghofe@13876: berghofe@13876: berghofe@13876: lemma qe_exI2: "A = B ==> (EX (x::int). A(x)) = (EX (x::int). B(x))" berghofe@13876: by simp berghofe@13876: berghofe@13876: lemma qe_exI: "(!!x::int. A x = B x) ==> (EX (x::int). A(x)) = (EX (x::int). B(x))" berghofe@13876: by rules berghofe@13876: berghofe@13876: lemma qe_ALLI: "(!!x::int. A x = B x) ==> (ALL (x::int). A(x)) = (ALL (x::int). B(x))" berghofe@13876: by rules berghofe@13876: berghofe@13876: lemma cp_expand: "(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (b::int) : B. (P1 (j) | P(b+j))) berghofe@13876: ==>(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (b::int) : B. (P1 (j) | P(b+j))) " berghofe@13876: by blast berghofe@13876: berghofe@13876: lemma cppi_expand: "(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (a::int) : A. (P1 (j) | P(a - j))) berghofe@13876: ==>(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (a::int) : A. (P1 (j) | P(a - j))) " berghofe@13876: by blast berghofe@13876: berghofe@13876: berghofe@13876: lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})" berghofe@13876: apply(simp add:atLeastAtMost_def atLeast_def atMost_def) berghofe@13876: apply(fastsimp) berghofe@13876: done berghofe@13876: wenzelm@14577: text {* \bigskip Theorems required for the @{text adjustcoeffitienteq} *} berghofe@13876: berghofe@13876: lemma ac_dvd_eq: assumes not0: "0 ~= (k::int)" berghofe@13876: shows "((m::int) dvd (c*n+t)) = (k*m dvd ((k*c)*n+(k*t)))" (is "?P = ?Q") berghofe@13876: proof berghofe@13876: assume ?P berghofe@13876: thus ?Q berghofe@13876: apply(simp add:dvd_def) berghofe@13876: apply clarify berghofe@13876: apply(rename_tac d) berghofe@13876: apply(drule_tac f = "op * k" in arg_cong) berghofe@13876: apply(simp only:int_distrib) berghofe@13876: apply(rule_tac x = "d" in exI) paulson@14271: apply(simp only:mult_ac) berghofe@13876: done berghofe@13876: next berghofe@13876: assume ?Q berghofe@13876: then obtain d where "k * c * n + k * t = (k*m)*d" by(fastsimp simp:dvd_def) paulson@14271: hence "(c * n + t) * k = (m*d) * k" by(simp add:int_distrib mult_ac) berghofe@13876: hence "((c * n + t) * k) div k = ((m*d) * k) div k" by(rule arg_cong[of _ _ "%t. t div k"]) berghofe@13876: hence "c*n+t = m*d" by(simp add: zdiv_zmult_self1[OF not0[symmetric]]) berghofe@13876: thus ?P by(simp add:dvd_def) berghofe@13876: qed berghofe@13876: berghofe@13876: lemma ac_lt_eq: assumes gr0: "0 < (k::int)" berghofe@13876: shows "((m::int) < (c*n+t)) = (k*m <((k*c)*n+(k*t)))" (is "?P = ?Q") berghofe@13876: proof berghofe@13876: assume P: ?P paulson@14271: show ?Q using zmult_zless_mono2[OF P gr0] by(simp add: int_distrib mult_ac) berghofe@13876: next berghofe@13876: assume ?Q paulson@14271: hence "0 < k*(c*n + t - m)" by(simp add: int_distrib mult_ac) paulson@14353: with gr0 have "0 < (c*n + t - m)" by(simp add: zero_less_mult_iff) berghofe@13876: thus ?P by(simp) berghofe@13876: qed berghofe@13876: berghofe@13876: lemma ac_eq_eq : assumes not0: "0 ~= (k::int)" shows "((m::int) = (c*n+t)) = (k*m =((k*c)*n+(k*t)) )" (is "?P = ?Q") berghofe@13876: proof berghofe@13876: assume ?P berghofe@13876: thus ?Q berghofe@13876: apply(drule_tac f = "op * k" in arg_cong) berghofe@13876: apply(simp only:int_distrib) berghofe@13876: done berghofe@13876: next berghofe@13876: assume ?Q paulson@14271: hence "m * k = (c*n + t) * k" by(simp add:int_distrib mult_ac) berghofe@13876: hence "((m) * k) div k = ((c*n + t) * k) div k" by(rule arg_cong[of _ _ "%t. t div k"]) berghofe@13876: thus ?P by(simp add: zdiv_zmult_self1[OF not0[symmetric]]) berghofe@13876: qed berghofe@13876: berghofe@13876: lemma ac_pi_eq: assumes gr0: "0 < (k::int)" shows "(~((0::int) < (c*n + t))) = (0 < ((-k)*c)*n + ((-k)*t + k))" berghofe@13876: proof - berghofe@13876: have "(~ (0::int) < (c*n + t)) = (0<1-(c*n + t))" by arith paulson@14271: also have "(1-(c*n + t)) = (-1*c)*n + (-t+1)" by(simp add: int_distrib mult_ac) berghofe@13876: also have "0<(-1*c)*n + (-t+1) = (0 < (k*(-1*c)*n) + (k*(-t+1)))" by(rule ac_lt_eq[of _ 0,OF gr0,simplified]) paulson@14271: also have "(k*(-1*c)*n) + (k*(-t+1)) = ((-k)*c)*n + ((-k)*t + k)" by(simp add: int_distrib mult_ac) berghofe@13876: finally show ?thesis . berghofe@13876: qed berghofe@13876: berghofe@13876: lemma binminus_uminus_conv: "(a::int) - b = a + (-b)" berghofe@13876: by arith berghofe@13876: berghofe@13876: lemma linearize_dvd: "(t::int) = t1 ==> (d dvd t) = (d dvd t1)" berghofe@13876: by simp berghofe@13876: berghofe@13876: lemma lf_lt: "(l::int) = ll ==> (r::int) = lr ==> (l < r) =(ll < lr)" berghofe@13876: by simp berghofe@13876: berghofe@13876: lemma lf_eq: "(l::int) = ll ==> (r::int) = lr ==> (l = r) =(ll = lr)" berghofe@13876: by simp berghofe@13876: berghofe@13876: lemma lf_dvd: "(l::int) = ll ==> (r::int) = lr ==> (l dvd r) =(ll dvd lr)" berghofe@13876: by simp berghofe@13876: wenzelm@14577: text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*} berghofe@13876: berghofe@13876: theorem all_nat: "(\x::nat. P x) = (\x::int. 0 <= x \ P (nat x))" berghofe@13876: by (simp split add: split_nat) berghofe@13876: berghofe@13876: theorem ex_nat: "(\x::nat. P x) = (\x::int. 0 <= x \ P (nat x))" berghofe@13876: apply (simp split add: split_nat) berghofe@13876: apply (rule iffI) berghofe@13876: apply (erule exE) berghofe@13876: apply (rule_tac x = "int x" in exI) berghofe@13876: apply simp berghofe@13876: apply (erule exE) berghofe@13876: apply (rule_tac x = "nat x" in exI) berghofe@13876: apply (erule conjE) berghofe@13876: apply (erule_tac x = "nat x" in allE) berghofe@13876: apply simp berghofe@13876: done berghofe@13876: berghofe@13876: theorem zdiff_int_split: "P (int (x - y)) = berghofe@13876: ((y \ x \ P (int x - int y)) \ (x < y \ P 0))" berghofe@13876: apply (case_tac "y \ x") berghofe@13876: apply (simp_all add: zdiff_int) berghofe@13876: done berghofe@13876: berghofe@13876: theorem zdvd_int: "(x dvd y) = (int x dvd int y)" berghofe@13876: apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric] berghofe@13876: nat_0_le cong add: conj_cong) berghofe@13876: apply (rule iffI) berghofe@13876: apply rules berghofe@13876: apply (erule exE) berghofe@13876: apply (case_tac "x=0") berghofe@13876: apply (rule_tac x=0 in exI) berghofe@13876: apply simp berghofe@13876: apply (case_tac "0 \ k") berghofe@13876: apply rules berghofe@13876: apply (simp add: linorder_not_le) paulson@14378: apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]]) berghofe@13876: apply assumption paulson@14271: apply (simp add: mult_ac) berghofe@13876: done berghofe@13876: berghofe@13876: theorem number_of1: "(0::int) <= number_of n \ (0::int) <= number_of (n BIT b)" berghofe@13876: by simp berghofe@13876: berghofe@13876: theorem number_of2: "(0::int) <= number_of bin.Pls" by simp berghofe@13876: berghofe@13876: theorem Suc_plus1: "Suc n = n + 1" by simp berghofe@13876: wenzelm@14577: text {* wenzelm@14577: \medskip Specific instances of congruence rules, to prevent wenzelm@14577: simplifier from looping. *} berghofe@13876: berghofe@13876: theorem imp_le_cong: "(0 <= x \ P = P') \ (0 <= (x::nat) \ P) = (0 <= x \ P')" berghofe@13876: by simp berghofe@13876: berghofe@13876: theorem conj_le_cong: "(0 <= x \ P = P') \ (0 <= (x::nat) \ P) = (0 <= x \ P')" berghofe@13876: by simp berghofe@13876: berghofe@13876: use "cooper_dec.ML" berghofe@13876: use "cooper_proof.ML" berghofe@13876: use "qelim.ML" berghofe@13876: use "presburger.ML" berghofe@13876: berghofe@13876: setup "Presburger.setup" berghofe@13876: berghofe@13876: end