berghofe@5181: (* Title: HOL/Datatype.thy berghofe@5181: ID: $Id$ wenzelm@20819: Author: Lawrence C Paulson, Cambridge University Computer Laboratory wenzelm@11954: Author: Stefan Berghofer and Markus Wenzel, TU Muenchen wenzelm@20819: wenzelm@20819: Could <*> be generalized to a general summation (Sigma)? berghofe@5181: *) berghofe@5181: wenzelm@20819: header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*} wenzelm@11954: nipkow@15131: theory Datatype wenzelm@21243: imports Nat Sum_Type nipkow@15131: begin wenzelm@11954: wenzelm@20819: typedef (Node) wenzelm@20819: ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}" wenzelm@20819: --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*} wenzelm@20819: by auto wenzelm@20819: wenzelm@20819: text{*Datatypes will be represented by sets of type @{text node}*} wenzelm@20819: wenzelm@20819: types 'a item = "('a, unit) node set" wenzelm@20819: ('a, 'b) dtree = "('a, 'b) node set" wenzelm@20819: wenzelm@20819: consts wenzelm@20819: apfst :: "['a=>'c, 'a*'b] => 'c*'b" wenzelm@20819: Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))" wenzelm@20819: wenzelm@20819: Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node" wenzelm@20819: ndepth :: "('a, 'b) node => nat" wenzelm@20819: wenzelm@20819: Atom :: "('a + nat) => ('a, 'b) dtree" wenzelm@20819: Leaf :: "'a => ('a, 'b) dtree" wenzelm@20819: Numb :: "nat => ('a, 'b) dtree" wenzelm@20819: Scons :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree" wenzelm@20819: In0 :: "('a, 'b) dtree => ('a, 'b) dtree" wenzelm@20819: In1 :: "('a, 'b) dtree => ('a, 'b) dtree" wenzelm@20819: Lim :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree" wenzelm@20819: wenzelm@20819: ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree" wenzelm@20819: wenzelm@20819: uprod :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" wenzelm@20819: usum :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" wenzelm@20819: wenzelm@20819: Split :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" wenzelm@20819: Case :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" wenzelm@20819: wenzelm@20819: dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] wenzelm@20819: => (('a, 'b) dtree * ('a, 'b) dtree)set" wenzelm@20819: dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] wenzelm@20819: => (('a, 'b) dtree * ('a, 'b) dtree)set" wenzelm@20819: wenzelm@20819: wenzelm@20819: defs wenzelm@20819: wenzelm@20819: Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" wenzelm@20819: wenzelm@20819: (*crude "lists" of nats -- needed for the constructions*) wenzelm@20819: apfst_def: "apfst == (%f (x,y). (f(x),y))" wenzelm@20819: Push_def: "Push == (%b h. nat_case b h)" wenzelm@20819: wenzelm@20819: (** operations on S-expressions -- sets of nodes **) wenzelm@20819: wenzelm@20819: (*S-expression constructors*) wenzelm@20819: Atom_def: "Atom == (%x. {Abs_Node((%k. Inr 0, x))})" wenzelm@20819: Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" wenzelm@20819: wenzelm@20819: (*Leaf nodes, with arbitrary or nat labels*) wenzelm@20819: Leaf_def: "Leaf == Atom o Inl" wenzelm@20819: Numb_def: "Numb == Atom o Inr" wenzelm@20819: wenzelm@20819: (*Injections of the "disjoint sum"*) wenzelm@20819: In0_def: "In0(M) == Scons (Numb 0) M" wenzelm@20819: In1_def: "In1(M) == Scons (Numb 1) M" wenzelm@20819: wenzelm@20819: (*Function spaces*) wenzelm@20819: Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}" wenzelm@20819: wenzelm@20819: (*the set of nodes with depth less than k*) wenzelm@20819: ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" wenzelm@20819: ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n) R wenzelm@20819: |] ==> R" wenzelm@20819: by (force simp add: apfst_def) wenzelm@20819: wenzelm@20819: (** Push -- an injection, analogous to Cons on lists **) wenzelm@20819: wenzelm@20819: lemma Push_inject1: "Push i f = Push j g ==> i=j" wenzelm@20819: apply (simp add: Push_def expand_fun_eq) wenzelm@20819: apply (drule_tac x=0 in spec, simp) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Push_inject2: "Push i f = Push j g ==> f=g" wenzelm@20819: apply (auto simp add: Push_def expand_fun_eq) wenzelm@20819: apply (drule_tac x="Suc x" in spec, simp) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Push_inject: wenzelm@20819: "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" wenzelm@20819: by (blast dest: Push_inject1 Push_inject2) wenzelm@20819: wenzelm@20819: lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" wenzelm@20819: by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) wenzelm@20819: wenzelm@20819: lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Introduction rules for Node ***) wenzelm@20819: wenzelm@20819: lemma Node_K0_I: "(%k. Inr 0, a) : Node" wenzelm@20819: by (simp add: Node_def) wenzelm@20819: wenzelm@20819: lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" wenzelm@20819: apply (simp add: Node_def Push_def) wenzelm@20819: apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: subsection{*Freeness: Distinctness of Constructors*} wenzelm@20819: wenzelm@20819: (** Scons vs Atom **) wenzelm@20819: wenzelm@20819: lemma Scons_not_Atom [iff]: "Scons M N \ Atom(a)" wenzelm@20819: apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) wenzelm@20819: apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] wenzelm@20819: dest!: Abs_Node_inj wenzelm@20819: elim!: apfst_convE sym [THEN Push_neq_K0]) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard] wenzelm@20819: declare Atom_not_Scons [iff] wenzelm@20819: wenzelm@20819: (*** Injectiveness ***) wenzelm@20819: wenzelm@20819: (** Atomic nodes **) wenzelm@20819: wenzelm@20819: lemma inj_Atom: "inj(Atom)" wenzelm@20819: apply (simp add: Atom_def) wenzelm@20819: apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) wenzelm@20819: done wenzelm@20819: lemmas Atom_inject = inj_Atom [THEN injD, standard] wenzelm@20819: wenzelm@20819: lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" wenzelm@20819: by (blast dest!: Atom_inject) wenzelm@20819: wenzelm@20819: lemma inj_Leaf: "inj(Leaf)" wenzelm@20819: apply (simp add: Leaf_def o_def) wenzelm@20819: apply (rule inj_onI) wenzelm@20819: apply (erule Atom_inject [THEN Inl_inject]) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemmas Leaf_inject = inj_Leaf [THEN injD, standard] wenzelm@20819: declare Leaf_inject [dest!] wenzelm@20819: wenzelm@20819: lemma inj_Numb: "inj(Numb)" wenzelm@20819: apply (simp add: Numb_def o_def) wenzelm@20819: apply (rule inj_onI) wenzelm@20819: apply (erule Atom_inject [THEN Inr_inject]) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemmas Numb_inject = inj_Numb [THEN injD, standard] wenzelm@20819: declare Numb_inject [dest!] wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injectiveness of Push_Node **) wenzelm@20819: wenzelm@20819: lemma Push_Node_inject: wenzelm@20819: "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: apply (simp add: Push_Node_def) wenzelm@20819: apply (erule Abs_Node_inj [THEN apfst_convE]) wenzelm@20819: apply (rule Rep_Node [THEN Node_Push_I])+ wenzelm@20819: apply (erule sym [THEN apfst_convE]) wenzelm@20819: apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injectiveness of Scons **) wenzelm@20819: wenzelm@20819: lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" wenzelm@20819: apply (simp add: Scons_def One_nat_def) wenzelm@20819: apply (blast dest!: Push_Node_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" wenzelm@20819: apply (simp add: Scons_def One_nat_def) wenzelm@20819: apply (blast dest!: Push_Node_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" wenzelm@20819: apply (erule equalityE) wenzelm@20819: apply (iprover intro: equalityI Scons_inject_lemma1) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" wenzelm@20819: apply (erule equalityE) wenzelm@20819: apply (iprover intro: equalityI Scons_inject_lemma2) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma Scons_inject: wenzelm@20819: "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" wenzelm@20819: by (iprover dest: Scons_inject1 Scons_inject2) wenzelm@20819: wenzelm@20819: lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" wenzelm@20819: by (blast elim!: Scons_inject) wenzelm@20819: wenzelm@20819: (*** Distinctness involving Leaf and Numb ***) wenzelm@20819: wenzelm@20819: (** Scons vs Leaf **) wenzelm@20819: wenzelm@20819: lemma Scons_not_Leaf [iff]: "Scons M N \ Leaf(a)" wenzelm@20819: by (simp add: Leaf_def o_def Scons_not_Atom) wenzelm@20819: wenzelm@20819: lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard] wenzelm@20819: declare Leaf_not_Scons [iff] wenzelm@20819: wenzelm@20819: (** Scons vs Numb **) wenzelm@20819: wenzelm@20819: lemma Scons_not_Numb [iff]: "Scons M N \ Numb(k)" wenzelm@20819: by (simp add: Numb_def o_def Scons_not_Atom) wenzelm@20819: wenzelm@20819: lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard] wenzelm@20819: declare Numb_not_Scons [iff] wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Leaf vs Numb **) wenzelm@20819: wenzelm@20819: lemma Leaf_not_Numb [iff]: "Leaf(a) \ Numb(k)" wenzelm@20819: by (simp add: Leaf_def Numb_def) wenzelm@20819: wenzelm@20819: lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard] wenzelm@20819: declare Numb_not_Leaf [iff] wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** ndepth -- the depth of a node ***) wenzelm@20819: wenzelm@20819: lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" wenzelm@20819: by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) wenzelm@20819: wenzelm@20819: lemma ndepth_Push_Node_aux: wenzelm@20819: "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" wenzelm@20819: apply (induct_tac "k", auto) wenzelm@20819: apply (erule Least_le) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ndepth_Push_Node: wenzelm@20819: "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" wenzelm@20819: apply (insert Rep_Node [of n, unfolded Node_def]) wenzelm@20819: apply (auto simp add: ndepth_def Push_Node_def wenzelm@20819: Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) wenzelm@20819: apply (rule Least_equality) wenzelm@20819: apply (auto simp add: Push_def ndepth_Push_Node_aux) wenzelm@20819: apply (erule LeastI) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** ntrunc applied to the various node sets ***) wenzelm@20819: wenzelm@20819: lemma ntrunc_0 [simp]: "ntrunc 0 M = {}" wenzelm@20819: by (simp add: ntrunc_def) wenzelm@20819: wenzelm@20819: lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" wenzelm@20819: by (auto simp add: Atom_def ntrunc_def ndepth_K0) wenzelm@20819: wenzelm@20819: lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" wenzelm@20819: by (simp add: Leaf_def o_def ntrunc_Atom) wenzelm@20819: wenzelm@20819: lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" wenzelm@20819: by (simp add: Numb_def o_def ntrunc_Atom) wenzelm@20819: wenzelm@20819: lemma ntrunc_Scons [simp]: wenzelm@20819: "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" wenzelm@20819: by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) wenzelm@20819: wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injection nodes **) wenzelm@20819: wenzelm@20819: lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}" wenzelm@20819: apply (simp add: In0_def) wenzelm@20819: apply (simp add: Scons_def) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" wenzelm@20819: by (simp add: In0_def) wenzelm@20819: wenzelm@20819: lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}" wenzelm@20819: apply (simp add: In1_def) wenzelm@20819: apply (simp add: Scons_def) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" wenzelm@20819: by (simp add: In1_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: subsection{*Set Constructions*} wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Cartesian Product ***) wenzelm@20819: wenzelm@20819: lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" wenzelm@20819: by (simp add: uprod_def) wenzelm@20819: wenzelm@20819: (*The general elimination rule*) wenzelm@20819: lemma uprodE [elim!]: wenzelm@20819: "[| c : uprod A B; wenzelm@20819: !!x y. [| x:A; y:B; c = Scons x y |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: uprod_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*Elimination of a pair -- introduces no eigenvariables*) wenzelm@20819: lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" wenzelm@20819: by (auto simp add: uprod_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Disjoint Sum ***) wenzelm@20819: wenzelm@20819: lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" wenzelm@20819: by (simp add: usum_def) wenzelm@20819: wenzelm@20819: lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" wenzelm@20819: by (simp add: usum_def) wenzelm@20819: wenzelm@20819: lemma usumE [elim!]: wenzelm@20819: "[| u : usum A B; wenzelm@20819: !!x. [| x:A; u=In0(x) |] ==> P; wenzelm@20819: !!y. [| y:B; u=In1(y) |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: usum_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (** Injection **) wenzelm@20819: wenzelm@20819: lemma In0_not_In1 [iff]: "In0(M) \ In1(N)" wenzelm@20819: by (auto simp add: In0_def In1_def One_nat_def) wenzelm@20819: wenzelm@20819: lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard] wenzelm@20819: declare In1_not_In0 [iff] wenzelm@20819: wenzelm@20819: lemma In0_inject: "In0(M) = In0(N) ==> M=N" wenzelm@20819: by (simp add: In0_def) wenzelm@20819: wenzelm@20819: lemma In1_inject: "In1(M) = In1(N) ==> M=N" wenzelm@20819: by (simp add: In1_def) wenzelm@20819: wenzelm@20819: lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" wenzelm@20819: by (blast dest!: In0_inject) wenzelm@20819: wenzelm@20819: lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" wenzelm@20819: by (blast dest!: In1_inject) wenzelm@20819: wenzelm@20819: lemma inj_In0: "inj In0" wenzelm@20819: by (blast intro!: inj_onI) wenzelm@20819: wenzelm@20819: lemma inj_In1: "inj In1" wenzelm@20819: by (blast intro!: inj_onI) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Function spaces ***) wenzelm@20819: wenzelm@20819: lemma Lim_inject: "Lim f = Lim g ==> f = g" wenzelm@20819: apply (simp add: Lim_def) wenzelm@20819: apply (rule ext) wenzelm@20819: apply (blast elim!: Push_Node_inject) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** proving equality of sets and functions using ntrunc ***) wenzelm@20819: wenzelm@20819: lemma ntrunc_subsetI: "ntrunc k M <= M" wenzelm@20819: by (auto simp add: ntrunc_def) wenzelm@20819: wenzelm@20819: lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" wenzelm@20819: by (auto simp add: ntrunc_def) wenzelm@20819: wenzelm@20819: (*A generalized form of the take-lemma*) wenzelm@20819: lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" wenzelm@20819: apply (rule equalityI) wenzelm@20819: apply (rule_tac [!] ntrunc_subsetD) wenzelm@20819: apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) wenzelm@20819: done wenzelm@20819: wenzelm@20819: lemma ntrunc_o_equality: wenzelm@20819: "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" wenzelm@20819: apply (rule ntrunc_equality [THEN ext]) wenzelm@20819: apply (simp add: expand_fun_eq) wenzelm@20819: done wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Monotonicity ***) wenzelm@20819: wenzelm@20819: lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" wenzelm@20819: by (simp add: uprod_def, blast) wenzelm@20819: wenzelm@20819: lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" wenzelm@20819: by (simp add: usum_def, blast) wenzelm@20819: wenzelm@20819: lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" wenzelm@20819: by (simp add: Scons_def, blast) wenzelm@20819: wenzelm@20819: lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" wenzelm@20819: by (simp add: In0_def subset_refl Scons_mono) wenzelm@20819: wenzelm@20819: lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" wenzelm@20819: by (simp add: In1_def subset_refl Scons_mono) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Split and Case ***) wenzelm@20819: wenzelm@20819: lemma Split [simp]: "Split c (Scons M N) = c M N" wenzelm@20819: by (simp add: Split_def) wenzelm@20819: wenzelm@20819: lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" wenzelm@20819: by (simp add: Case_def) wenzelm@20819: wenzelm@20819: lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" wenzelm@20819: by (simp add: Case_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: wenzelm@20819: (**** UN x. B(x) rules ****) wenzelm@20819: wenzelm@20819: lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" wenzelm@20819: by (simp add: ntrunc_def, blast) wenzelm@20819: wenzelm@20819: lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" wenzelm@20819: by (simp add: Scons_def, blast) wenzelm@20819: wenzelm@20819: lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" wenzelm@20819: by (simp add: Scons_def, blast) wenzelm@20819: wenzelm@20819: lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" wenzelm@20819: by (simp add: In0_def Scons_UN1_y) wenzelm@20819: wenzelm@20819: lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" wenzelm@20819: by (simp add: In1_def Scons_UN1_y) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Equality for Cartesian Product ***) wenzelm@20819: wenzelm@20819: lemma dprodI [intro!]: wenzelm@20819: "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" wenzelm@20819: by (auto simp add: dprod_def) wenzelm@20819: wenzelm@20819: (*The general elimination rule*) wenzelm@20819: lemma dprodE [elim!]: wenzelm@20819: "[| c : dprod r s; wenzelm@20819: !!x y x' y'. [| (x,x') : r; (y,y') : s; wenzelm@20819: c = (Scons x y, Scons x' y') |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: dprod_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Equality for Disjoint Sum ***) wenzelm@20819: wenzelm@20819: lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" wenzelm@20819: by (auto simp add: dsum_def) wenzelm@20819: wenzelm@20819: lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" wenzelm@20819: by (auto simp add: dsum_def) wenzelm@20819: wenzelm@20819: lemma dsumE [elim!]: wenzelm@20819: "[| w : dsum r s; wenzelm@20819: !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; wenzelm@20819: !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P wenzelm@20819: |] ==> P" wenzelm@20819: by (auto simp add: dsum_def) wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Monotonicity ***) wenzelm@20819: wenzelm@20819: lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Bounding theorems ***) wenzelm@20819: wenzelm@20819: lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] wenzelm@20819: wenzelm@20819: (*Dependent version*) wenzelm@20819: lemma dprod_subset_Sigma2: wenzelm@20819: "(dprod (Sigma A B) (Sigma C D)) <= wenzelm@20819: Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" wenzelm@20819: by auto wenzelm@20819: wenzelm@20819: lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" wenzelm@20819: by blast wenzelm@20819: wenzelm@20819: lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] wenzelm@20819: wenzelm@20819: wenzelm@20819: (*** Domain ***) wenzelm@20819: wenzelm@20819: lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" wenzelm@20819: by auto wenzelm@20819: wenzelm@20819: lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" wenzelm@20819: by auto wenzelm@20819: wenzelm@20819: wenzelm@20819: subsection {* Finishing the datatype package setup *} wenzelm@20819: wenzelm@20819: text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *} haftmann@20847: setup "DatatypeCodegen.setup_hooks" wenzelm@20819: hide (open) const Push Node Atom Leaf Numb Lim Split Case wenzelm@20819: hide (open) type node item wenzelm@20819: wenzelm@20819: wenzelm@20819: section {* Datatypes *} wenzelm@20819: wenzelm@11954: subsection {* Representing primitive types *} berghofe@5181: berghofe@5759: rep_datatype bool wenzelm@11954: distinct True_not_False False_not_True wenzelm@11954: induction bool_induct wenzelm@11954: wenzelm@11954: declare case_split [cases type: bool] wenzelm@11954: -- "prefer plain propositional version" wenzelm@11954: wenzelm@11954: rep_datatype unit wenzelm@11954: induction unit_induct berghofe@5181: berghofe@5181: rep_datatype prod wenzelm@11954: inject Pair_eq wenzelm@11954: induction prod_induct wenzelm@11954: wenzelm@12918: rep_datatype sum wenzelm@12918: distinct Inl_not_Inr Inr_not_Inl wenzelm@12918: inject Inl_eq Inr_eq wenzelm@12918: induction sum_induct wenzelm@12918: wenzelm@12918: lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)" wenzelm@12918: apply (rule_tac s = s in sumE) wenzelm@12918: apply (erule ssubst) wenzelm@20798: apply (rule sum.cases(1)) wenzelm@12918: apply (erule ssubst) wenzelm@20798: apply (rule sum.cases(2)) wenzelm@12918: done wenzelm@12918: wenzelm@12918: lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t" wenzelm@12918: -- {* Prevents simplification of @{text f} and @{text g}: much faster. *} wenzelm@20798: by simp wenzelm@12918: wenzelm@12918: lemma sum_case_inject: wenzelm@12918: "sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P" wenzelm@12918: proof - wenzelm@12918: assume a: "sum_case f1 f2 = sum_case g1 g2" wenzelm@12918: assume r: "f1 = g1 ==> f2 = g2 ==> P" wenzelm@12918: show P wenzelm@12918: apply (rule r) wenzelm@12918: apply (rule ext) paulson@14208: apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp) wenzelm@12918: apply (rule ext) paulson@14208: apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp) wenzelm@12918: done wenzelm@12918: qed wenzelm@12918: berghofe@13635: constdefs berghofe@13635: Suml :: "('a => 'c) => 'a + 'b => 'c" berghofe@13635: "Suml == (%f. sum_case f arbitrary)" berghofe@13635: berghofe@13635: Sumr :: "('b => 'c) => 'a + 'b => 'c" berghofe@13635: "Sumr == sum_case arbitrary" berghofe@13635: berghofe@13635: lemma Suml_inject: "Suml f = Suml g ==> f = g" berghofe@13635: by (unfold Suml_def) (erule sum_case_inject) berghofe@13635: berghofe@13635: lemma Sumr_inject: "Sumr f = Sumr g ==> f = g" berghofe@13635: by (unfold Sumr_def) (erule sum_case_inject) berghofe@13635: wenzelm@20798: hide (open) const Suml Sumr berghofe@13635: wenzelm@12918: wenzelm@12918: subsection {* Further cases/induct rules for tuples *} wenzelm@11954: wenzelm@20798: lemma prod_cases3 [cases type]: wenzelm@20798: obtains (fields) a b c where "y = (a, b, c)" wenzelm@20798: by (cases y, case_tac b) blast wenzelm@11954: wenzelm@11954: lemma prod_induct3 [case_names fields, induct type]: wenzelm@11954: "(!!a b c. P (a, b, c)) ==> P x" wenzelm@11954: by (cases x) blast wenzelm@11954: wenzelm@20798: lemma prod_cases4 [cases type]: wenzelm@20798: obtains (fields) a b c d where "y = (a, b, c, d)" wenzelm@20798: by (cases y, case_tac c) blast wenzelm@11954: wenzelm@11954: lemma prod_induct4 [case_names fields, induct type]: wenzelm@11954: "(!!a b c d. P (a, b, c, d)) ==> P x" wenzelm@11954: by (cases x) blast berghofe@5181: wenzelm@20798: lemma prod_cases5 [cases type]: wenzelm@20798: obtains (fields) a b c d e where "y = (a, b, c, d, e)" wenzelm@20798: by (cases y, case_tac d) blast wenzelm@11954: wenzelm@11954: lemma prod_induct5 [case_names fields, induct type]: wenzelm@11954: "(!!a b c d e. P (a, b, c, d, e)) ==> P x" wenzelm@11954: by (cases x) blast wenzelm@11954: wenzelm@20798: lemma prod_cases6 [cases type]: wenzelm@20798: obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)" wenzelm@20798: by (cases y, case_tac e) blast wenzelm@11954: wenzelm@11954: lemma prod_induct6 [case_names fields, induct type]: wenzelm@11954: "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x" wenzelm@11954: by (cases x) blast wenzelm@11954: wenzelm@20798: lemma prod_cases7 [cases type]: wenzelm@20798: obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)" wenzelm@20798: by (cases y, case_tac f) blast wenzelm@11954: wenzelm@11954: lemma prod_induct7 [case_names fields, induct type]: wenzelm@11954: "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x" wenzelm@11954: by (cases x) blast berghofe@5759: wenzelm@12918: wenzelm@12918: subsection {* The option type *} wenzelm@12918: wenzelm@12918: datatype 'a option = None | Some 'a wenzelm@12918: wenzelm@20798: lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)" nipkow@18576: by (induct x) auto nipkow@18576: wenzelm@20798: lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)" paulson@18447: by (induct x) auto paulson@18447: nipkow@18576: text{*Although it may appear that both of these equalities are helpful nipkow@18576: only when applied to assumptions, in practice it seems better to give nipkow@18576: them the uniform iff attribute. *} wenzelm@12918: wenzelm@12918: lemma option_caseE: wenzelm@20798: assumes c: "(case x of None => P | Some y => Q y)" wenzelm@20798: obtains wenzelm@20798: (None) "x = None" and P wenzelm@20798: | (Some) y where "x = Some y" and "Q y" wenzelm@20798: using c by (cases x) simp_all wenzelm@12918: wenzelm@12918: wenzelm@12918: subsubsection {* Operations *} wenzelm@12918: wenzelm@12918: consts wenzelm@12918: the :: "'a option => 'a" wenzelm@12918: primrec wenzelm@12918: "the (Some x) = x" wenzelm@12918: wenzelm@12918: consts wenzelm@12918: o2s :: "'a option => 'a set" wenzelm@12918: primrec wenzelm@12918: "o2s None = {}" wenzelm@12918: "o2s (Some x) = {x}" wenzelm@12918: wenzelm@12918: lemma ospec [dest]: "(ALL x:o2s A. P x) ==> A = Some x ==> P x" wenzelm@12918: by simp wenzelm@12918: wenzelm@17876: ML_setup {* change_claset (fn cs => cs addSD2 ("ospec", thm "ospec")) *} wenzelm@12918: wenzelm@12918: lemma elem_o2s [iff]: "(x : o2s xo) = (xo = Some x)" wenzelm@12918: by (cases xo) auto wenzelm@12918: wenzelm@12918: lemma o2s_empty_eq [simp]: "(o2s xo = {}) = (xo = None)" wenzelm@12918: by (cases xo) auto wenzelm@12918: wenzelm@12918: wenzelm@12918: constdefs wenzelm@12918: option_map :: "('a => 'b) => ('a option => 'b option)" wenzelm@12918: "option_map == %f y. case y of None => None | Some x => Some (f x)" wenzelm@12918: wenzelm@12918: lemma option_map_None [simp]: "option_map f None = None" wenzelm@12918: by (simp add: option_map_def) wenzelm@12918: wenzelm@12918: lemma option_map_Some [simp]: "option_map f (Some x) = Some (f x)" wenzelm@12918: by (simp add: option_map_def) wenzelm@12918: wenzelm@20798: lemma option_map_is_None [iff]: wenzelm@20798: "(option_map f opt = None) = (opt = None)" wenzelm@20798: by (simp add: option_map_def split add: option.split) nipkow@14187: wenzelm@12918: lemma option_map_eq_Some [iff]: wenzelm@12918: "(option_map f xo = Some y) = (EX z. xo = Some z & f z = y)" wenzelm@20798: by (simp add: option_map_def split add: option.split) nipkow@14187: nipkow@14187: lemma option_map_comp: wenzelm@20798: "option_map f (option_map g opt) = option_map (f o g) opt" wenzelm@20798: by (simp add: option_map_def split add: option.split) wenzelm@12918: wenzelm@12918: lemma option_map_o_sum_case [simp]: wenzelm@12918: "option_map f o sum_case g h = sum_case (option_map f o g) (option_map f o h)" wenzelm@20798: by (rule ext) (simp split: sum.split) wenzelm@12918: haftmann@19787: haftmann@21111: subsubsection {* Code generator setup *} haftmann@19817: haftmann@21111: definition wenzelm@21404: is_none :: "'a option \ bool" where haftmann@21111: is_none_none [normal post, symmetric, code inline]: "is_none x \ x = None" haftmann@19787: haftmann@21111: lemma is_none_code [code]: haftmann@21111: shows "is_none None \ True" haftmann@21111: and "is_none (Some x) \ False" haftmann@21111: unfolding is_none_none [symmetric] by simp_all haftmann@21111: haftmann@21111: hide (open) const is_none haftmann@19787: wenzelm@17458: lemmas [code] = imp_conv_disj wenzelm@17458: krauss@20523: lemma [code func]: haftmann@19138: "(\ True) = False" by (rule HOL.simp_thms) haftmann@19138: krauss@20523: lemma [code func]: haftmann@19138: "(\ False) = True" by (rule HOL.simp_thms) haftmann@19138: krauss@20523: lemma [code func]: nipkow@19179: shows "(False \ x) = False" wenzelm@20798: and "(True \ x) = x" wenzelm@20798: and "(x \ False) = False" wenzelm@20798: and "(x \ True) = x" by simp_all haftmann@19138: krauss@20523: lemma [code func]: nipkow@19179: shows "(False \ x) = x" wenzelm@20798: and "(True \ x) = True" wenzelm@20798: and "(x \ False) = x" wenzelm@20798: and "(x \ True) = True" by simp_all haftmann@19138: haftmann@19138: declare krauss@20523: if_True [code func] krauss@20523: if_False [code func] nipkow@19179: fst_conv [code] nipkow@19179: snd_conv [code] haftmann@19138: haftmann@20105: lemma split_is_prod_case [code inline]: wenzelm@20798: "split = prod_case" wenzelm@20798: by (simp add: expand_fun_eq split_def prod.cases) haftmann@20105: haftmann@20453: code_type bool haftmann@21111: (SML "bool") haftmann@21111: (Haskell "Bool") haftmann@19138: haftmann@20453: code_const True and False and Not and "op &" and "op |" and If haftmann@21111: (SML "true" and "false" and "not" haftmann@20453: and infixl 1 "andalso" and infixl 0 "orelse" haftmann@21126: and "!(if (_)/ then (_)/ else (_))") haftmann@21111: (Haskell "True" and "False" and "not" haftmann@20453: and infixl 3 "&&" and infixl 2 "||" haftmann@21126: and "!(if (_)/ then (_)/ else (_))") haftmann@20453: haftmann@20453: code_type * haftmann@20453: (SML infix 2 "*") haftmann@21126: (Haskell "!((_),/ (_))") haftmann@19138: haftmann@20453: code_const Pair haftmann@21126: (SML "!((_),/ (_))") haftmann@21126: (Haskell "!((_),/ (_))") haftmann@18702: haftmann@20453: code_type unit haftmann@21111: (SML "unit") haftmann@21111: (Haskell "()") haftmann@19150: haftmann@20453: code_const Unity haftmann@21111: (SML "()") haftmann@21111: (Haskell "()") haftmann@19150: haftmann@20453: code_type option haftmann@20453: (SML "_ option") haftmann@20453: (Haskell "Maybe _") haftmann@19150: haftmann@20453: code_const None and Some haftmann@21111: (SML "NONE" and "SOME") haftmann@21111: (Haskell "Nothing" and "Just") haftmann@19150: haftmann@20588: code_instance option :: eq haftmann@20588: (Haskell -) haftmann@20588: haftmann@21046: code_const "Code_Generator.eq \ 'a\eq option \ 'a option \ bool" haftmann@20588: (Haskell infixl 4 "==") haftmann@20588: haftmann@21079: code_reserved SML haftmann@21079: bool true false not unit option NONE SOME haftmann@21079: haftmann@21079: code_reserved Haskell haftmann@21079: Bool True False not Maybe Nothing Just haftmann@21079: wenzelm@20819: ML wenzelm@20819: {* wenzelm@20819: val apfst_conv = thm "apfst_conv"; wenzelm@20819: val apfst_convE = thm "apfst_convE"; wenzelm@20819: val Push_inject1 = thm "Push_inject1"; wenzelm@20819: val Push_inject2 = thm "Push_inject2"; wenzelm@20819: val Push_inject = thm "Push_inject"; wenzelm@20819: val Push_neq_K0 = thm "Push_neq_K0"; wenzelm@20819: val Abs_Node_inj = thm "Abs_Node_inj"; wenzelm@20819: val Node_K0_I = thm "Node_K0_I"; wenzelm@20819: val Node_Push_I = thm "Node_Push_I"; wenzelm@20819: val Scons_not_Atom = thm "Scons_not_Atom"; wenzelm@20819: val Atom_not_Scons = thm "Atom_not_Scons"; wenzelm@20819: val inj_Atom = thm "inj_Atom"; wenzelm@20819: val Atom_inject = thm "Atom_inject"; wenzelm@20819: val Atom_Atom_eq = thm "Atom_Atom_eq"; wenzelm@20819: val inj_Leaf = thm "inj_Leaf"; wenzelm@20819: val Leaf_inject = thm "Leaf_inject"; wenzelm@20819: val inj_Numb = thm "inj_Numb"; wenzelm@20819: val Numb_inject = thm "Numb_inject"; wenzelm@20819: val Push_Node_inject = thm "Push_Node_inject"; wenzelm@20819: val Scons_inject1 = thm "Scons_inject1"; wenzelm@20819: val Scons_inject2 = thm "Scons_inject2"; wenzelm@20819: val Scons_inject = thm "Scons_inject"; wenzelm@20819: val Scons_Scons_eq = thm "Scons_Scons_eq"; wenzelm@20819: val Scons_not_Leaf = thm "Scons_not_Leaf"; wenzelm@20819: val Leaf_not_Scons = thm "Leaf_not_Scons"; wenzelm@20819: val Scons_not_Numb = thm "Scons_not_Numb"; wenzelm@20819: val Numb_not_Scons = thm "Numb_not_Scons"; wenzelm@20819: val Leaf_not_Numb = thm "Leaf_not_Numb"; wenzelm@20819: val Numb_not_Leaf = thm "Numb_not_Leaf"; wenzelm@20819: val ndepth_K0 = thm "ndepth_K0"; wenzelm@20819: val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux"; wenzelm@20819: val ndepth_Push_Node = thm "ndepth_Push_Node"; wenzelm@20819: val ntrunc_0 = thm "ntrunc_0"; wenzelm@20819: val ntrunc_Atom = thm "ntrunc_Atom"; wenzelm@20819: val ntrunc_Leaf = thm "ntrunc_Leaf"; wenzelm@20819: val ntrunc_Numb = thm "ntrunc_Numb"; wenzelm@20819: val ntrunc_Scons = thm "ntrunc_Scons"; wenzelm@20819: val ntrunc_one_In0 = thm "ntrunc_one_In0"; wenzelm@20819: val ntrunc_In0 = thm "ntrunc_In0"; wenzelm@20819: val ntrunc_one_In1 = thm "ntrunc_one_In1"; wenzelm@20819: val ntrunc_In1 = thm "ntrunc_In1"; wenzelm@20819: val uprodI = thm "uprodI"; wenzelm@20819: val uprodE = thm "uprodE"; wenzelm@20819: val uprodE2 = thm "uprodE2"; wenzelm@20819: val usum_In0I = thm "usum_In0I"; wenzelm@20819: val usum_In1I = thm "usum_In1I"; wenzelm@20819: val usumE = thm "usumE"; wenzelm@20819: val In0_not_In1 = thm "In0_not_In1"; wenzelm@20819: val In1_not_In0 = thm "In1_not_In0"; wenzelm@20819: val In0_inject = thm "In0_inject"; wenzelm@20819: val In1_inject = thm "In1_inject"; wenzelm@20819: val In0_eq = thm "In0_eq"; wenzelm@20819: val In1_eq = thm "In1_eq"; wenzelm@20819: val inj_In0 = thm "inj_In0"; wenzelm@20819: val inj_In1 = thm "inj_In1"; wenzelm@20819: val Lim_inject = thm "Lim_inject"; wenzelm@20819: val ntrunc_subsetI = thm "ntrunc_subsetI"; wenzelm@20819: val ntrunc_subsetD = thm "ntrunc_subsetD"; wenzelm@20819: val ntrunc_equality = thm "ntrunc_equality"; wenzelm@20819: val ntrunc_o_equality = thm "ntrunc_o_equality"; wenzelm@20819: val uprod_mono = thm "uprod_mono"; wenzelm@20819: val usum_mono = thm "usum_mono"; wenzelm@20819: val Scons_mono = thm "Scons_mono"; wenzelm@20819: val In0_mono = thm "In0_mono"; wenzelm@20819: val In1_mono = thm "In1_mono"; wenzelm@20819: val Split = thm "Split"; wenzelm@20819: val Case_In0 = thm "Case_In0"; wenzelm@20819: val Case_In1 = thm "Case_In1"; wenzelm@20819: val ntrunc_UN1 = thm "ntrunc_UN1"; wenzelm@20819: val Scons_UN1_x = thm "Scons_UN1_x"; wenzelm@20819: val Scons_UN1_y = thm "Scons_UN1_y"; wenzelm@20819: val In0_UN1 = thm "In0_UN1"; wenzelm@20819: val In1_UN1 = thm "In1_UN1"; wenzelm@20819: val dprodI = thm "dprodI"; wenzelm@20819: val dprodE = thm "dprodE"; wenzelm@20819: val dsum_In0I = thm "dsum_In0I"; wenzelm@20819: val dsum_In1I = thm "dsum_In1I"; wenzelm@20819: val dsumE = thm "dsumE"; wenzelm@20819: val dprod_mono = thm "dprod_mono"; wenzelm@20819: val dsum_mono = thm "dsum_mono"; wenzelm@20819: val dprod_Sigma = thm "dprod_Sigma"; wenzelm@20819: val dprod_subset_Sigma = thm "dprod_subset_Sigma"; wenzelm@20819: val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2"; wenzelm@20819: val dsum_Sigma = thm "dsum_Sigma"; wenzelm@20819: val dsum_subset_Sigma = thm "dsum_subset_Sigma"; wenzelm@20819: val Domain_dprod = thm "Domain_dprod"; wenzelm@20819: val Domain_dsum = thm "Domain_dsum"; wenzelm@20819: *} wenzelm@20819: berghofe@5181: end