wenzelm@47455: (* Title: HOL/Library/Quotient_List.thy huffman@47641: Author: Cezary Kaliszyk, Christian Urban and Brian Huffman kaliszyk@35222: *) wenzelm@35788: wenzelm@35788: header {* Quotient infrastructure for the list type *} wenzelm@35788: kaliszyk@35222: theory Quotient_List huffman@47929: imports Main Quotient_Set Quotient_Product Quotient_Option kaliszyk@35222: begin kaliszyk@35222: huffman@47641: subsection {* Relator for list type *} huffman@47641: haftmann@40820: lemma map_id [id_simps]: haftmann@40820: "map id = id" haftmann@46663: by (fact List.map.id) kaliszyk@35222: huffman@47641: lemma list_all2_eq [id_simps, relator_eq]: haftmann@40820: "list_all2 (op =) = (op =)" haftmann@40820: proof (rule ext)+ haftmann@40820: fix xs ys haftmann@40820: show "list_all2 (op =) xs ys \ xs = ys" haftmann@40820: by (induct xs ys rule: list_induct2') simp_all haftmann@40820: qed kaliszyk@35222: huffman@47660: lemma list_all2_OO: "list_all2 (A OO B) = list_all2 A OO list_all2 B" huffman@47660: proof (intro ext iffI) huffman@47660: fix xs ys huffman@47660: assume "list_all2 (A OO B) xs ys" huffman@47660: thus "(list_all2 A OO list_all2 B) xs ys" huffman@47660: unfolding OO_def huffman@47660: by (induct, simp, simp add: list_all2_Cons1 list_all2_Cons2, fast) huffman@47660: next huffman@47660: fix xs ys huffman@47660: assume "(list_all2 A OO list_all2 B) xs ys" huffman@47660: then obtain zs where "list_all2 A xs zs" and "list_all2 B zs ys" .. huffman@47660: thus "list_all2 (A OO B) xs ys" huffman@47660: by (induct arbitrary: ys, simp, clarsimp simp add: list_all2_Cons1, fast) huffman@47660: qed huffman@47660: kuncar@47982: lemma list_reflp[reflexivity_rule]: haftmann@40820: assumes "reflp R" haftmann@40820: shows "reflp (list_all2 R)" haftmann@40820: proof (rule reflpI) haftmann@40820: from assms have *: "\xs. R xs xs" by (rule reflpE) haftmann@40820: fix xs haftmann@40820: show "list_all2 R xs xs" haftmann@40820: by (induct xs) (simp_all add: *) haftmann@40820: qed kaliszyk@35222: kuncar@47982: lemma list_left_total[reflexivity_rule]: kuncar@47982: assumes "left_total R" kuncar@47982: shows "left_total (list_all2 R)" kuncar@47982: proof (rule left_totalI) kuncar@47982: from assms have *: "\xs. \ys. R xs ys" by (rule left_totalE) kuncar@47982: fix xs kuncar@47982: show "\ ys. list_all2 R xs ys" kuncar@47982: by (induct xs) (simp_all add: * list_all2_Cons1) kuncar@47982: qed kuncar@47982: kuncar@47982: haftmann@40820: lemma list_symp: haftmann@40820: assumes "symp R" haftmann@40820: shows "symp (list_all2 R)" haftmann@40820: proof (rule sympI) haftmann@40820: from assms have *: "\xs ys. R xs ys \ R ys xs" by (rule sympE) haftmann@40820: fix xs ys haftmann@40820: assume "list_all2 R xs ys" haftmann@40820: then show "list_all2 R ys xs" haftmann@40820: by (induct xs ys rule: list_induct2') (simp_all add: *) haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma list_transp: haftmann@40820: assumes "transp R" haftmann@40820: shows "transp (list_all2 R)" haftmann@40820: proof (rule transpI) haftmann@40820: from assms have *: "\xs ys zs. R xs ys \ R ys zs \ R xs zs" by (rule transpE) haftmann@40820: fix xs ys zs huffman@45803: assume "list_all2 R xs ys" and "list_all2 R ys zs" huffman@45803: then show "list_all2 R xs zs" huffman@45803: by (induct arbitrary: zs) (auto simp: list_all2_Cons1 intro: *) haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma list_equivp [quot_equiv]: haftmann@40820: "equivp R \ equivp (list_all2 R)" haftmann@40820: by (blast intro: equivpI list_reflp list_symp list_transp elim: equivpE) kaliszyk@35222: huffman@47641: lemma right_total_list_all2 [transfer_rule]: huffman@47641: "right_total R \ right_total (list_all2 R)" huffman@47641: unfolding right_total_def huffman@47641: by (rule allI, induct_tac y, simp, simp add: list_all2_Cons2) huffman@47641: huffman@47641: lemma right_unique_list_all2 [transfer_rule]: huffman@47641: "right_unique R \ right_unique (list_all2 R)" huffman@47641: unfolding right_unique_def huffman@47641: apply (rule allI, rename_tac xs, induct_tac xs) huffman@47641: apply (auto simp add: list_all2_Cons1) huffman@47641: done huffman@47641: huffman@47641: lemma bi_total_list_all2 [transfer_rule]: huffman@47641: "bi_total A \ bi_total (list_all2 A)" huffman@47641: unfolding bi_total_def huffman@47641: apply safe huffman@47641: apply (rename_tac xs, induct_tac xs, simp, simp add: list_all2_Cons1) huffman@47641: apply (rename_tac ys, induct_tac ys, simp, simp add: list_all2_Cons2) huffman@47641: done huffman@47641: huffman@47641: lemma bi_unique_list_all2 [transfer_rule]: huffman@47641: "bi_unique A \ bi_unique (list_all2 A)" huffman@47641: unfolding bi_unique_def huffman@47641: apply (rule conjI) huffman@47641: apply (rule allI, rename_tac xs, induct_tac xs) huffman@47641: apply (simp, force simp add: list_all2_Cons1) huffman@47641: apply (subst (2) all_comm, subst (1) all_comm) huffman@47641: apply (rule allI, rename_tac xs, induct_tac xs) huffman@47641: apply (simp, force simp add: list_all2_Cons2) huffman@47641: done huffman@47641: huffman@47641: subsection {* Transfer rules for transfer package *} huffman@47641: huffman@47641: lemma Nil_transfer [transfer_rule]: "(list_all2 A) [] []" huffman@47641: by simp huffman@47641: huffman@47641: lemma Cons_transfer [transfer_rule]: huffman@47641: "(A ===> list_all2 A ===> list_all2 A) Cons Cons" huffman@47641: unfolding fun_rel_def by simp huffman@47641: huffman@47641: lemma list_case_transfer [transfer_rule]: huffman@47641: "(B ===> (A ===> list_all2 A ===> B) ===> list_all2 A ===> B) huffman@47641: list_case list_case" huffman@47641: unfolding fun_rel_def by (simp split: list.split) huffman@47641: huffman@47641: lemma list_rec_transfer [transfer_rule]: huffman@47641: "(B ===> (A ===> list_all2 A ===> B ===> B) ===> list_all2 A ===> B) huffman@47641: list_rec list_rec" huffman@47641: unfolding fun_rel_def by (clarify, erule list_all2_induct, simp_all) huffman@47641: huffman@47929: lemma tl_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> list_all2 A) tl tl" huffman@47929: unfolding tl_def by transfer_prover huffman@47929: huffman@47929: lemma butlast_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> list_all2 A) butlast butlast" huffman@47929: by (rule fun_relI, erule list_all2_induct, auto) huffman@47929: huffman@47929: lemma set_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> set_rel A) set set" huffman@47929: unfolding set_def by transfer_prover huffman@47929: huffman@47641: lemma map_transfer [transfer_rule]: huffman@47641: "((A ===> B) ===> list_all2 A ===> list_all2 B) map map" huffman@47641: unfolding List.map_def by transfer_prover huffman@47641: huffman@47641: lemma append_transfer [transfer_rule]: huffman@47641: "(list_all2 A ===> list_all2 A ===> list_all2 A) append append" huffman@47641: unfolding List.append_def by transfer_prover huffman@47641: huffman@47929: lemma rev_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> list_all2 A) rev rev" huffman@47929: unfolding List.rev_def by transfer_prover huffman@47929: huffman@47641: lemma filter_transfer [transfer_rule]: huffman@47641: "((A ===> op =) ===> list_all2 A ===> list_all2 A) filter filter" huffman@47641: unfolding List.filter_def by transfer_prover huffman@47641: huffman@47929: lemma fold_transfer [transfer_rule]: huffman@47929: "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) fold fold" huffman@47929: unfolding List.fold_def by transfer_prover huffman@47929: huffman@47641: lemma foldr_transfer [transfer_rule]: huffman@47641: "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) foldr foldr" huffman@47641: unfolding List.foldr_def by transfer_prover huffman@47641: huffman@47641: lemma foldl_transfer [transfer_rule]: huffman@47641: "((B ===> A ===> B) ===> B ===> list_all2 A ===> B) foldl foldl" huffman@47641: unfolding List.foldl_def by transfer_prover huffman@47641: huffman@47641: lemma concat_transfer [transfer_rule]: huffman@47641: "(list_all2 (list_all2 A) ===> list_all2 A) concat concat" huffman@47641: unfolding List.concat_def by transfer_prover huffman@47641: huffman@47641: lemma drop_transfer [transfer_rule]: huffman@47641: "(op = ===> list_all2 A ===> list_all2 A) drop drop" huffman@47641: unfolding List.drop_def by transfer_prover huffman@47641: huffman@47641: lemma take_transfer [transfer_rule]: huffman@47641: "(op = ===> list_all2 A ===> list_all2 A) take take" huffman@47641: unfolding List.take_def by transfer_prover huffman@47641: huffman@47929: lemma list_update_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> op = ===> A ===> list_all2 A) list_update list_update" huffman@47929: unfolding list_update_def by transfer_prover huffman@47929: huffman@47929: lemma takeWhile_transfer [transfer_rule]: huffman@47929: "((A ===> op =) ===> list_all2 A ===> list_all2 A) takeWhile takeWhile" huffman@47929: unfolding takeWhile_def by transfer_prover huffman@47929: huffman@47929: lemma dropWhile_transfer [transfer_rule]: huffman@47929: "((A ===> op =) ===> list_all2 A ===> list_all2 A) dropWhile dropWhile" huffman@47929: unfolding dropWhile_def by transfer_prover huffman@47929: huffman@47929: lemma zip_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> list_all2 B ===> list_all2 (prod_rel A B)) zip zip" huffman@47929: unfolding zip_def by transfer_prover huffman@47929: huffman@47929: lemma insert_transfer [transfer_rule]: huffman@47929: assumes [transfer_rule]: "bi_unique A" huffman@47929: shows "(A ===> list_all2 A ===> list_all2 A) List.insert List.insert" huffman@47929: unfolding List.insert_def [abs_def] by transfer_prover huffman@47929: huffman@47929: lemma find_transfer [transfer_rule]: huffman@47929: "((A ===> op =) ===> list_all2 A ===> option_rel A) List.find List.find" huffman@47929: unfolding List.find_def by transfer_prover huffman@47929: huffman@47929: lemma remove1_transfer [transfer_rule]: huffman@47929: assumes [transfer_rule]: "bi_unique A" huffman@47929: shows "(A ===> list_all2 A ===> list_all2 A) remove1 remove1" huffman@47929: unfolding remove1_def by transfer_prover huffman@47929: huffman@47929: lemma removeAll_transfer [transfer_rule]: huffman@47929: assumes [transfer_rule]: "bi_unique A" huffman@47929: shows "(A ===> list_all2 A ===> list_all2 A) removeAll removeAll" huffman@47929: unfolding removeAll_def by transfer_prover huffman@47929: huffman@47929: lemma distinct_transfer [transfer_rule]: huffman@47929: assumes [transfer_rule]: "bi_unique A" huffman@47929: shows "(list_all2 A ===> op =) distinct distinct" huffman@47929: unfolding distinct_def by transfer_prover huffman@47929: huffman@47929: lemma remdups_transfer [transfer_rule]: huffman@47929: assumes [transfer_rule]: "bi_unique A" huffman@47929: shows "(list_all2 A ===> list_all2 A) remdups remdups" huffman@47929: unfolding remdups_def by transfer_prover huffman@47929: huffman@47929: lemma replicate_transfer [transfer_rule]: huffman@47929: "(op = ===> A ===> list_all2 A) replicate replicate" huffman@47929: unfolding replicate_def by transfer_prover huffman@47929: huffman@47641: lemma length_transfer [transfer_rule]: huffman@47641: "(list_all2 A ===> op =) length length" huffman@47641: unfolding list_size_overloaded_def by transfer_prover huffman@47641: huffman@47929: lemma rotate1_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> list_all2 A) rotate1 rotate1" huffman@47929: unfolding rotate1_def by transfer_prover huffman@47929: huffman@47929: lemma funpow_transfer [transfer_rule]: (* FIXME: move to Transfer.thy *) huffman@47929: "(op = ===> (A ===> A) ===> (A ===> A)) compow compow" huffman@47929: unfolding funpow_def by transfer_prover huffman@47929: huffman@47929: lemma rotate_transfer [transfer_rule]: huffman@47929: "(op = ===> list_all2 A ===> list_all2 A) rotate rotate" huffman@47929: unfolding rotate_def [abs_def] by transfer_prover huffman@47641: huffman@47641: lemma list_all2_transfer [transfer_rule]: huffman@47641: "((A ===> B ===> op =) ===> list_all2 A ===> list_all2 B ===> op =) huffman@47641: list_all2 list_all2" huffman@47929: apply (subst (4) list_all2_def [abs_def]) huffman@47929: apply (subst (3) list_all2_def [abs_def]) huffman@47929: apply transfer_prover huffman@47641: done huffman@47641: huffman@47929: lemma sublist_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> set_rel (op =) ===> list_all2 A) sublist sublist" huffman@47929: unfolding sublist_def [abs_def] by transfer_prover huffman@47929: huffman@47929: lemma partition_transfer [transfer_rule]: huffman@47929: "((A ===> op =) ===> list_all2 A ===> prod_rel (list_all2 A) (list_all2 A)) huffman@47929: partition partition" huffman@47929: unfolding partition_def by transfer_prover huffman@47650: huffman@47923: lemma lists_transfer [transfer_rule]: huffman@47923: "(set_rel A ===> set_rel (list_all2 A)) lists lists" huffman@47923: apply (rule fun_relI, rule set_relI) huffman@47923: apply (erule lists.induct, simp) huffman@47923: apply (simp only: set_rel_def list_all2_Cons1, metis lists.Cons) huffman@47923: apply (erule lists.induct, simp) huffman@47923: apply (simp only: set_rel_def list_all2_Cons2, metis lists.Cons) huffman@47923: done huffman@47923: huffman@47929: lemma set_Cons_transfer [transfer_rule]: huffman@47929: "(set_rel A ===> set_rel (list_all2 A) ===> set_rel (list_all2 A)) huffman@47929: set_Cons set_Cons" huffman@47929: unfolding fun_rel_def set_rel_def set_Cons_def huffman@47929: apply safe huffman@47929: apply (simp add: list_all2_Cons1, fast) huffman@47929: apply (simp add: list_all2_Cons2, fast) huffman@47929: done huffman@47929: huffman@47929: lemma listset_transfer [transfer_rule]: huffman@47929: "(list_all2 (set_rel A) ===> set_rel (list_all2 A)) listset listset" huffman@47929: unfolding listset_def by transfer_prover huffman@47929: huffman@47929: lemma null_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> op =) List.null List.null" huffman@47929: unfolding fun_rel_def List.null_def by auto huffman@47929: huffman@47929: lemma list_all_transfer [transfer_rule]: huffman@47929: "((A ===> op =) ===> list_all2 A ===> op =) list_all list_all" huffman@47929: unfolding list_all_iff [abs_def] by transfer_prover huffman@47929: huffman@47929: lemma list_ex_transfer [transfer_rule]: huffman@47929: "((A ===> op =) ===> list_all2 A ===> op =) list_ex list_ex" huffman@47929: unfolding list_ex_iff [abs_def] by transfer_prover huffman@47929: huffman@47929: lemma splice_transfer [transfer_rule]: huffman@47929: "(list_all2 A ===> list_all2 A ===> list_all2 A) splice splice" huffman@47929: apply (rule fun_relI, erule list_all2_induct, simp add: fun_rel_def, simp) huffman@47929: apply (rule fun_relI) huffman@47929: apply (erule_tac xs=x in list_all2_induct, simp, simp add: fun_rel_def) huffman@47929: done huffman@47929: huffman@47641: subsection {* Setup for lifting package *} huffman@47641: kuncar@47777: lemma Quotient_list[quot_map]: huffman@47641: assumes "Quotient R Abs Rep T" huffman@47641: shows "Quotient (list_all2 R) (map Abs) (map Rep) (list_all2 T)" huffman@47641: proof (unfold Quotient_alt_def, intro conjI allI impI) huffman@47641: from assms have 1: "\x y. T x y \ Abs x = y" huffman@47641: unfolding Quotient_alt_def by simp huffman@47641: fix xs ys assume "list_all2 T xs ys" thus "map Abs xs = ys" huffman@47641: by (induct, simp, simp add: 1) huffman@47641: next huffman@47641: from assms have 2: "\x. T (Rep x) x" huffman@47641: unfolding Quotient_alt_def by simp huffman@47641: fix xs show "list_all2 T (map Rep xs) xs" huffman@47641: by (induct xs, simp, simp add: 2) huffman@47641: next huffman@47641: from assms have 3: "\x y. R x y \ T x (Abs x) \ T y (Abs y) \ Abs x = Abs y" huffman@47641: unfolding Quotient_alt_def by simp huffman@47641: fix xs ys show "list_all2 R xs ys \ list_all2 T xs (map Abs xs) \ huffman@47641: list_all2 T ys (map Abs ys) \ map Abs xs = map Abs ys" huffman@47641: by (induct xs ys rule: list_induct2', simp_all, metis 3) huffman@47641: qed huffman@47641: huffman@47641: lemma list_invariant_commute [invariant_commute]: huffman@47641: "list_all2 (Lifting.invariant P) = Lifting.invariant (list_all P)" huffman@47641: apply (simp add: fun_eq_iff list_all2_def list_all_iff Lifting.invariant_def Ball_def) huffman@47641: apply (intro allI) huffman@47641: apply (induct_tac rule: list_induct2') huffman@47641: apply simp_all huffman@47641: apply metis huffman@47641: done huffman@47641: huffman@47641: subsection {* Rules for quotient package *} huffman@47641: kuncar@47308: lemma list_quotient3 [quot_thm]: kuncar@47308: assumes "Quotient3 R Abs Rep" kuncar@47308: shows "Quotient3 (list_all2 R) (map Abs) (map Rep)" kuncar@47308: proof (rule Quotient3I) kuncar@47308: from assms have "\x. Abs (Rep x) = x" by (rule Quotient3_abs_rep) haftmann@40820: then show "\xs. map Abs (map Rep xs) = xs" by (simp add: comp_def) haftmann@40820: next kuncar@47308: from assms have "\x y. R (Rep x) (Rep y) \ x = y" by (rule Quotient3_rel_rep) haftmann@40820: then show "\xs. list_all2 R (map Rep xs) (map Rep xs)" haftmann@40820: by (simp add: list_all2_map1 list_all2_map2 list_all2_eq) haftmann@40820: next haftmann@40820: fix xs ys kuncar@47308: from assms have "\x y. R x x \ R y y \ Abs x = Abs y \ R x y" by (rule Quotient3_rel) haftmann@40820: then show "list_all2 R xs ys \ list_all2 R xs xs \ list_all2 R ys ys \ map Abs xs = map Abs ys" haftmann@40820: by (induct xs ys rule: list_induct2') auto haftmann@40820: qed kaliszyk@35222: kuncar@47308: declare [[mapQ3 list = (list_all2, list_quotient3)]] kuncar@47094: haftmann@40820: lemma cons_prs [quot_preserve]: kuncar@47308: assumes q: "Quotient3 R Abs Rep" kaliszyk@35222: shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" kuncar@47308: by (auto simp add: fun_eq_iff comp_def Quotient3_abs_rep [OF q]) kaliszyk@35222: haftmann@40820: lemma cons_rsp [quot_respect]: kuncar@47308: assumes q: "Quotient3 R Abs Rep" kaliszyk@37492: shows "(R ===> list_all2 R ===> list_all2 R) (op #) (op #)" haftmann@40463: by auto kaliszyk@35222: haftmann@40820: lemma nil_prs [quot_preserve]: kuncar@47308: assumes q: "Quotient3 R Abs Rep" kaliszyk@35222: shows "map Abs [] = []" kaliszyk@35222: by simp kaliszyk@35222: haftmann@40820: lemma nil_rsp [quot_respect]: kuncar@47308: assumes q: "Quotient3 R Abs Rep" kaliszyk@37492: shows "list_all2 R [] []" kaliszyk@35222: by simp kaliszyk@35222: kaliszyk@35222: lemma map_prs_aux: kuncar@47308: assumes a: "Quotient3 R1 abs1 rep1" kuncar@47308: and b: "Quotient3 R2 abs2 rep2" kaliszyk@35222: shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" kaliszyk@35222: by (induct l) kuncar@47308: (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) kaliszyk@35222: haftmann@40820: lemma map_prs [quot_preserve]: kuncar@47308: assumes a: "Quotient3 R1 abs1 rep1" kuncar@47308: and b: "Quotient3 R2 abs2 rep2" kaliszyk@35222: shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" kaliszyk@36216: and "((abs1 ---> id) ---> map rep1 ---> id) map = map" haftmann@40463: by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def) kuncar@47308: (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) haftmann@40463: haftmann@40820: lemma map_rsp [quot_respect]: kuncar@47308: assumes q1: "Quotient3 R1 Abs1 Rep1" kuncar@47308: and q2: "Quotient3 R2 Abs2 Rep2" kaliszyk@37492: shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map" kaliszyk@37492: and "((R1 ===> op =) ===> (list_all2 R1) ===> op =) map map" huffman@47641: unfolding list_all2_eq [symmetric] by (rule map_transfer)+ kaliszyk@35222: kaliszyk@35222: lemma foldr_prs_aux: kuncar@47308: assumes a: "Quotient3 R1 abs1 rep1" kuncar@47308: and b: "Quotient3 R2 abs2 rep2" kaliszyk@35222: shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" kuncar@47308: by (induct l) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) kaliszyk@35222: haftmann@40820: lemma foldr_prs [quot_preserve]: kuncar@47308: assumes a: "Quotient3 R1 abs1 rep1" kuncar@47308: and b: "Quotient3 R2 abs2 rep2" kaliszyk@35222: shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" haftmann@40463: apply (simp add: fun_eq_iff) haftmann@40463: by (simp only: fun_eq_iff foldr_prs_aux[OF a b]) kaliszyk@35222: (simp) kaliszyk@35222: kaliszyk@35222: lemma foldl_prs_aux: kuncar@47308: assumes a: "Quotient3 R1 abs1 rep1" kuncar@47308: and b: "Quotient3 R2 abs2 rep2" kaliszyk@35222: shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" kuncar@47308: by (induct l arbitrary:e) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) kaliszyk@35222: haftmann@40820: lemma foldl_prs [quot_preserve]: kuncar@47308: assumes a: "Quotient3 R1 abs1 rep1" kuncar@47308: and b: "Quotient3 R2 abs2 rep2" kaliszyk@35222: shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" haftmann@40463: by (simp add: fun_eq_iff foldl_prs_aux [OF a b]) kaliszyk@35222: kaliszyk@35222: (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) kaliszyk@35222: lemma foldl_rsp[quot_respect]: kuncar@47308: assumes q1: "Quotient3 R1 Abs1 Rep1" kuncar@47308: and q2: "Quotient3 R2 Abs2 Rep2" kaliszyk@37492: shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_all2 R2 ===> R1) foldl foldl" huffman@47641: by (rule foldl_transfer) kaliszyk@35222: kaliszyk@35222: lemma foldr_rsp[quot_respect]: kuncar@47308: assumes q1: "Quotient3 R1 Abs1 Rep1" kuncar@47308: and q2: "Quotient3 R2 Abs2 Rep2" kaliszyk@37492: shows "((R1 ===> R2 ===> R2) ===> list_all2 R1 ===> R2 ===> R2) foldr foldr" huffman@47641: by (rule foldr_transfer) kaliszyk@35222: kaliszyk@37492: lemma list_all2_rsp: kaliszyk@36154: assumes r: "\x y. R x y \ (\a b. R a b \ S x a = T y b)" kaliszyk@37492: and l1: "list_all2 R x y" kaliszyk@37492: and l2: "list_all2 R a b" kaliszyk@37492: shows "list_all2 S x a = list_all2 T y b" huffman@45803: using l1 l2 huffman@45803: by (induct arbitrary: a b rule: list_all2_induct, huffman@45803: auto simp: list_all2_Cons1 list_all2_Cons2 r) kaliszyk@36154: haftmann@40820: lemma [quot_respect]: kaliszyk@37492: "((R ===> R ===> op =) ===> list_all2 R ===> list_all2 R ===> op =) list_all2 list_all2" huffman@47641: by (rule list_all2_transfer) kaliszyk@36154: haftmann@40820: lemma [quot_preserve]: kuncar@47308: assumes a: "Quotient3 R abs1 rep1" kaliszyk@37492: shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2" nipkow@39302: apply (simp add: fun_eq_iff) kaliszyk@36154: apply clarify kaliszyk@36154: apply (induct_tac xa xb rule: list_induct2') kuncar@47308: apply (simp_all add: Quotient3_abs_rep[OF a]) kaliszyk@36154: done kaliszyk@36154: haftmann@40820: lemma [quot_preserve]: kuncar@47308: assumes a: "Quotient3 R abs1 rep1" kaliszyk@37492: shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" kuncar@47308: by (induct l m rule: list_induct2') (simp_all add: Quotient3_rel_rep[OF a]) kaliszyk@36154: kaliszyk@37492: lemma list_all2_find_element: kaliszyk@36276: assumes a: "x \ set a" kaliszyk@37492: and b: "list_all2 R a b" kaliszyk@36276: shows "\y. (y \ set b \ R x y)" huffman@45803: using b a by induct auto kaliszyk@36276: kaliszyk@37492: lemma list_all2_refl: kaliszyk@35222: assumes a: "\x y. R x y = (R x = R y)" kaliszyk@37492: shows "list_all2 R x x" kaliszyk@35222: by (induct x) (auto simp add: a) kaliszyk@35222: kaliszyk@35222: end