wenzelm@33443: (* Title: HOL/Library/positivstellensatz.ML wenzelm@33443: Author: Amine Chaieb, University of Cambridge wenzelm@33443: wenzelm@33443: A generic arithmetic prover based on Positivstellensatz certificates wenzelm@33443: --- also implements Fourrier-Motzkin elimination as a special case wenzelm@33443: Fourrier-Motzkin elimination. chaieb@31120: *) chaieb@31120: chaieb@31120: (* A functor for finite mappings based on Tables *) Philipp@32645: huffman@46594: signature FUNC = chaieb@31120: sig huffman@46594: include TABLE huffman@46594: val apply : 'a table -> key -> 'a huffman@46594: val applyd :'a table -> (key -> 'a) -> key -> 'a huffman@46594: val combine : ('a -> 'a -> 'a) -> ('a -> bool) -> 'a table -> 'a table -> 'a table huffman@46594: val dom : 'a table -> key list huffman@46594: val tryapplyd : 'a table -> key -> 'a -> 'a huffman@46594: val updatep : (key * 'a -> bool) -> key * 'a -> 'a table -> 'a table huffman@46594: val choose : 'a table -> key * 'a huffman@46594: val onefunc : key * 'a -> 'a table chaieb@31120: end; chaieb@31120: huffman@46594: functor FuncFun(Key: KEY) : FUNC = chaieb@31120: struct chaieb@31120: wenzelm@31971: structure Tab = Table(Key); chaieb@31120: Philipp@32829: open Tab; Philipp@32829: chaieb@31120: fun dom a = sort Key.ord (Tab.keys a); huffman@46594: fun applyd f d x = case Tab.lookup f x of chaieb@31120: SOME y => y chaieb@31120: | NONE => d x; chaieb@31120: chaieb@31120: fun apply f x = applyd f (fn _ => raise Tab.UNDEF x) x; chaieb@31120: fun tryapplyd f a d = applyd f (K d) a; chaieb@31120: fun updatep p (k,v) t = if p (k, v) then t else update (k,v) t huffman@46594: fun combine f z a b = huffman@46594: let huffman@46594: fun h (k,v) t = case Tab.lookup t k of huffman@46594: NONE => Tab.update (k,v) t huffman@46594: | SOME v' => let val w = f v v' huffman@46594: in if z w then Tab.delete k t else Tab.update (k,w) t end; chaieb@31120: in Tab.fold h a b end; chaieb@31120: huffman@46594: fun choose f = case Tab.min_key f of huffman@46594: SOME k => (k, the (Tab.lookup f k)) huffman@46594: | NONE => error "FuncFun.choose : Completely empty function" chaieb@31120: Philipp@32829: fun onefunc kv = update kv empty Philipp@32829: chaieb@31120: end; chaieb@31120: Philipp@32645: (* Some standard functors and utility functions for them *) Philipp@32645: Philipp@32645: structure FuncUtil = Philipp@32645: struct Philipp@32645: chaieb@31120: structure Intfunc = FuncFun(type key = int val ord = int_ord); Philipp@32645: structure Ratfunc = FuncFun(type key = Rat.rat val ord = Rat.ord); Philipp@32645: structure Intpairfunc = FuncFun(type key = int*int val ord = prod_ord int_ord int_ord); chaieb@31120: structure Symfunc = FuncFun(type key = string val ord = fast_string_ord); wenzelm@35408: structure Termfunc = FuncFun(type key = term val ord = Term_Ord.fast_term_ord); Philipp@32645: wenzelm@35408: val cterm_ord = Term_Ord.fast_term_ord o pairself term_of Philipp@32645: Philipp@32645: structure Ctermfunc = FuncFun(type key = cterm val ord = cterm_ord); Philipp@32645: Philipp@32829: type monomial = int Ctermfunc.table; chaieb@31120: Philipp@32829: val monomial_ord = list_ord (prod_ord cterm_ord int_ord) o pairself Ctermfunc.dest Philipp@32645: Philipp@32645: structure Monomialfunc = FuncFun(type key = monomial val ord = monomial_ord) chaieb@31120: Philipp@32829: type poly = Rat.rat Monomialfunc.table; Philipp@32645: Philipp@32645: (* The ordering so we can create canonical HOL polynomials. *) chaieb@31120: Philipp@32829: fun dest_monomial mon = sort (cterm_ord o pairself fst) (Ctermfunc.dest mon); chaieb@31120: Philipp@32645: fun monomial_order (m1,m2) = huffman@46594: if Ctermfunc.is_empty m2 then LESS huffman@46594: else if Ctermfunc.is_empty m1 then GREATER huffman@46594: else huffman@46594: let huffman@46594: val mon1 = dest_monomial m1 Philipp@32645: val mon2 = dest_monomial m2 wenzelm@33002: val deg1 = fold (Integer.add o snd) mon1 0 huffman@46594: val deg2 = fold (Integer.add o snd) mon2 0 huffman@46594: in if deg1 < deg2 then GREATER huffman@46594: else if deg1 > deg2 then LESS huffman@46594: else list_ord (prod_ord cterm_ord int_ord) (mon1,mon2) huffman@46594: end; chaieb@31120: Philipp@32645: end chaieb@31120: Philipp@32645: (* positivstellensatz datatype and prover generation *) chaieb@31120: huffman@46594: signature REAL_ARITH = chaieb@31120: sig huffman@46594: chaieb@31120: datatype positivstellensatz = huffman@46594: Axiom_eq of int huffman@46594: | Axiom_le of int huffman@46594: | Axiom_lt of int huffman@46594: | Rational_eq of Rat.rat huffman@46594: | Rational_le of Rat.rat huffman@46594: | Rational_lt of Rat.rat huffman@46594: | Square of FuncUtil.poly huffman@46594: | Eqmul of FuncUtil.poly * positivstellensatz huffman@46594: | Sum of positivstellensatz * positivstellensatz huffman@46594: | Product of positivstellensatz * positivstellensatz; chaieb@31120: huffman@46594: datatype pss_tree = Trivial | Cert of positivstellensatz | Branch of pss_tree * pss_tree Philipp@32645: huffman@46594: datatype tree_choice = Left | Right Philipp@32645: huffman@46594: type prover = tree_choice list -> huffman@46594: (thm list * thm list * thm list -> positivstellensatz -> thm) -> huffman@46594: thm list * thm list * thm list -> thm * pss_tree huffman@46594: type cert_conv = cterm -> thm * pss_tree Philipp@32645: huffman@46594: val gen_gen_real_arith : huffman@46594: Proof.context -> (Rat.rat -> cterm) * conv * conv * conv * huffman@46594: conv * conv * conv * conv * conv * conv * prover -> cert_conv huffman@46594: val real_linear_prover : (thm list * thm list * thm list -> positivstellensatz -> thm) -> huffman@46594: thm list * thm list * thm list -> thm * pss_tree chaieb@31120: huffman@46594: val gen_real_arith : Proof.context -> huffman@46594: (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * prover -> cert_conv Philipp@32645: huffman@46594: val gen_prover_real_arith : Proof.context -> prover -> cert_conv Philipp@32645: huffman@46594: val is_ratconst : cterm -> bool huffman@46594: val dest_ratconst : cterm -> Rat.rat huffman@46594: val cterm_of_rat : Rat.rat -> cterm Philipp@32645: chaieb@31120: end chaieb@31120: Philipp@32645: structure RealArith : REAL_ARITH = chaieb@31120: struct chaieb@31120: huffman@46594: open Conv chaieb@31120: (* ------------------------------------------------------------------------- *) chaieb@31120: (* Data structure for Positivstellensatz refutations. *) chaieb@31120: (* ------------------------------------------------------------------------- *) chaieb@31120: chaieb@31120: datatype positivstellensatz = huffman@46594: Axiom_eq of int huffman@46594: | Axiom_le of int huffman@46594: | Axiom_lt of int huffman@46594: | Rational_eq of Rat.rat huffman@46594: | Rational_le of Rat.rat huffman@46594: | Rational_lt of Rat.rat huffman@46594: | Square of FuncUtil.poly huffman@46594: | Eqmul of FuncUtil.poly * positivstellensatz huffman@46594: | Sum of positivstellensatz * positivstellensatz huffman@46594: | Product of positivstellensatz * positivstellensatz; chaieb@31120: (* Theorems used in the procedure *) chaieb@31120: Philipp@32645: datatype pss_tree = Trivial | Cert of positivstellensatz | Branch of pss_tree * pss_tree Philipp@32645: datatype tree_choice = Left | Right huffman@46594: type prover = tree_choice list -> Philipp@32645: (thm list * thm list * thm list -> positivstellensatz -> thm) -> huffman@46594: thm list * thm list * thm list -> thm * pss_tree Philipp@32645: type cert_conv = cterm -> thm * pss_tree chaieb@31120: Philipp@32645: Philipp@32645: (* Some useful derived rules *) huffman@46594: fun deduct_antisym_rule tha thb = huffman@46594: Thm.equal_intr (Thm.implies_intr (cprop_of thb) tha) wenzelm@36945: (Thm.implies_intr (cprop_of tha) thb); Philipp@32645: wenzelm@44058: fun prove_hyp tha thb = wenzelm@44058: if exists (curry op aconv (concl_of tha)) (Thm.hyps_of thb) (* FIXME !? *) wenzelm@36945: then Thm.equal_elim (Thm.symmetric (deduct_antisym_rule tha thb)) tha else thb; Philipp@32645: wenzelm@33443: val pth = @{lemma "(((x::real) < y) == (y - x > 0))" and "((x <= y) == (y - x >= 0))" and wenzelm@33443: "((x = y) == (x - y = 0))" and "((~(x < y)) == (x - y >= 0))" and wenzelm@33443: "((~(x <= y)) == (x - y > 0))" and "((~(x = y)) == (x - y > 0 | -(x - y) > 0))" wenzelm@33443: by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)}; chaieb@31120: chaieb@31120: val pth_final = @{lemma "(~p ==> False) ==> p" by blast} huffman@46594: val pth_add = wenzelm@33443: @{lemma "(x = (0::real) ==> y = 0 ==> x + y = 0 )" and "( x = 0 ==> y >= 0 ==> x + y >= 0)" and wenzelm@33443: "(x = 0 ==> y > 0 ==> x + y > 0)" and "(x >= 0 ==> y = 0 ==> x + y >= 0)" and wenzelm@33443: "(x >= 0 ==> y >= 0 ==> x + y >= 0)" and "(x >= 0 ==> y > 0 ==> x + y > 0)" and wenzelm@33443: "(x > 0 ==> y = 0 ==> x + y > 0)" and "(x > 0 ==> y >= 0 ==> x + y > 0)" and wenzelm@33443: "(x > 0 ==> y > 0 ==> x + y > 0)" by simp_all}; chaieb@31120: huffman@46594: val pth_mul = wenzelm@33443: @{lemma "(x = (0::real) ==> y = 0 ==> x * y = 0)" and "(x = 0 ==> y >= 0 ==> x * y = 0)" and wenzelm@33443: "(x = 0 ==> y > 0 ==> x * y = 0)" and "(x >= 0 ==> y = 0 ==> x * y = 0)" and wenzelm@33443: "(x >= 0 ==> y >= 0 ==> x * y >= 0)" and "(x >= 0 ==> y > 0 ==> x * y >= 0)" and wenzelm@33443: "(x > 0 ==> y = 0 ==> x * y = 0)" and "(x > 0 ==> y >= 0 ==> x * y >= 0)" and wenzelm@33443: "(x > 0 ==> y > 0 ==> x * y > 0)" chaieb@31120: by (auto intro: mult_mono[where a="0::real" and b="x" and d="y" and c="0", simplified] wenzelm@33443: mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])}; chaieb@31120: chaieb@31120: val pth_emul = @{lemma "y = (0::real) ==> x * y = 0" by simp}; chaieb@31120: val pth_square = @{lemma "x * x >= (0::real)" by simp}; chaieb@31120: wenzelm@33443: val weak_dnf_simps = wenzelm@45654: List.take (@{thms simp_thms}, 34) @ wenzelm@33443: @{lemma "((P & (Q | R)) = ((P&Q) | (P&R)))" and "((Q | R) & P) = ((Q&P) | (R&P))" and wenzelm@33443: "(P & Q) = (Q & P)" and "((P | Q) = (Q | P))" by blast+}; chaieb@31120: huffman@44454: (* wenzelm@33443: val nnfD_simps = wenzelm@33443: @{lemma "((~(P & Q)) = (~P | ~Q))" and "((~(P | Q)) = (~P & ~Q) )" and wenzelm@33443: "((P --> Q) = (~P | Q) )" and "((P = Q) = ((P & Q) | (~P & ~ Q)))" and wenzelm@33443: "((~(P = Q)) = ((P & ~ Q) | (~P & Q)) )" and "((~ ~(P)) = P)" by blast+}; huffman@44454: *) chaieb@31120: chaieb@31120: val choice_iff = @{lemma "(ALL x. EX y. P x y) = (EX f. ALL x. P x (f x))" by metis}; wenzelm@33443: val prenex_simps = wenzelm@33443: map (fn th => th RS sym) wenzelm@33443: ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @ haftmann@37598: @{thms "HOL.all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); chaieb@31120: wenzelm@33443: val real_abs_thms1 = @{lemma wenzelm@33443: "((-1 * abs(x::real) >= r) = (-1 * x >= r & 1 * x >= r))" and wenzelm@33443: "((-1 * abs(x) + a >= r) = (a + -1 * x >= r & a + 1 * x >= r))" and wenzelm@33443: "((a + -1 * abs(x) >= r) = (a + -1 * x >= r & a + 1 * x >= r))" and wenzelm@33443: "((a + -1 * abs(x) + b >= r) = (a + -1 * x + b >= r & a + 1 * x + b >= r))" and wenzelm@33443: "((a + b + -1 * abs(x) >= r) = (a + b + -1 * x >= r & a + b + 1 * x >= r))" and wenzelm@33443: "((a + b + -1 * abs(x) + c >= r) = (a + b + -1 * x + c >= r & a + b + 1 * x + c >= r))" and wenzelm@33443: "((-1 * max x y >= r) = (-1 * x >= r & -1 * y >= r))" and wenzelm@33443: "((-1 * max x y + a >= r) = (a + -1 * x >= r & a + -1 * y >= r))" and wenzelm@33443: "((a + -1 * max x y >= r) = (a + -1 * x >= r & a + -1 * y >= r))" and wenzelm@33443: "((a + -1 * max x y + b >= r) = (a + -1 * x + b >= r & a + -1 * y + b >= r))" and wenzelm@33443: "((a + b + -1 * max x y >= r) = (a + b + -1 * x >= r & a + b + -1 * y >= r))" and wenzelm@33443: "((a + b + -1 * max x y + c >= r) = (a + b + -1 * x + c >= r & a + b + -1 * y + c >= r))" and wenzelm@33443: "((1 * min x y >= r) = (1 * x >= r & 1 * y >= r))" and wenzelm@33443: "((1 * min x y + a >= r) = (a + 1 * x >= r & a + 1 * y >= r))" and wenzelm@33443: "((a + 1 * min x y >= r) = (a + 1 * x >= r & a + 1 * y >= r))" and wenzelm@33443: "((a + 1 * min x y + b >= r) = (a + 1 * x + b >= r & a + 1 * y + b >= r))" and wenzelm@33443: "((a + b + 1 * min x y >= r) = (a + b + 1 * x >= r & a + b + 1 * y >= r))" and wenzelm@33443: "((a + b + 1 * min x y + c >= r) = (a + b + 1 * x + c >= r & a + b + 1 * y + c >= r))" and wenzelm@33443: "((min x y >= r) = (x >= r & y >= r))" and wenzelm@33443: "((min x y + a >= r) = (a + x >= r & a + y >= r))" and wenzelm@33443: "((a + min x y >= r) = (a + x >= r & a + y >= r))" and wenzelm@33443: "((a + min x y + b >= r) = (a + x + b >= r & a + y + b >= r))" and wenzelm@33443: "((a + b + min x y >= r) = (a + b + x >= r & a + b + y >= r))" and wenzelm@33443: "((a + b + min x y + c >= r) = (a + b + x + c >= r & a + b + y + c >= r))" and wenzelm@33443: "((-1 * abs(x) > r) = (-1 * x > r & 1 * x > r))" and wenzelm@33443: "((-1 * abs(x) + a > r) = (a + -1 * x > r & a + 1 * x > r))" and wenzelm@33443: "((a + -1 * abs(x) > r) = (a + -1 * x > r & a + 1 * x > r))" and wenzelm@33443: "((a + -1 * abs(x) + b > r) = (a + -1 * x + b > r & a + 1 * x + b > r))" and wenzelm@33443: "((a + b + -1 * abs(x) > r) = (a + b + -1 * x > r & a + b + 1 * x > r))" and wenzelm@33443: "((a + b + -1 * abs(x) + c > r) = (a + b + -1 * x + c > r & a + b + 1 * x + c > r))" and wenzelm@33443: "((-1 * max x y > r) = ((-1 * x > r) & -1 * y > r))" and wenzelm@33443: "((-1 * max x y + a > r) = (a + -1 * x > r & a + -1 * y > r))" and wenzelm@33443: "((a + -1 * max x y > r) = (a + -1 * x > r & a + -1 * y > r))" and wenzelm@33443: "((a + -1 * max x y + b > r) = (a + -1 * x + b > r & a + -1 * y + b > r))" and wenzelm@33443: "((a + b + -1 * max x y > r) = (a + b + -1 * x > r & a + b + -1 * y > r))" and wenzelm@33443: "((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r & a + b + -1 * y + c > r))" and wenzelm@33443: "((min x y > r) = (x > r & y > r))" and wenzelm@33443: "((min x y + a > r) = (a + x > r & a + y > r))" and wenzelm@33443: "((a + min x y > r) = (a + x > r & a + y > r))" and wenzelm@33443: "((a + min x y + b > r) = (a + x + b > r & a + y + b > r))" and wenzelm@33443: "((a + b + min x y > r) = (a + b + x > r & a + b + y > r))" and wenzelm@33443: "((a + b + min x y + c > r) = (a + b + x + c > r & a + b + y + c > r))" chaieb@31120: by auto}; chaieb@31120: haftmann@35028: val abs_split' = @{lemma "P (abs (x::'a::linordered_idom)) == (x >= 0 & P x | x < 0 & P (-x))" chaieb@31120: by (atomize (full)) (auto split add: abs_split)}; chaieb@31120: chaieb@31120: val max_split = @{lemma "P (max x y) == ((x::'a::linorder) <= y & P y | x > y & P x)" chaieb@31120: by (atomize (full)) (cases "x <= y", auto simp add: max_def)}; chaieb@31120: chaieb@31120: val min_split = @{lemma "P (min x y) == ((x::'a::linorder) <= y & P x | x > y & P y)" chaieb@31120: by (atomize (full)) (cases "x <= y", auto simp add: min_def)}; chaieb@31120: chaieb@31120: krauss@39920: (* Miscellaneous *) huffman@46594: fun literals_conv bops uops cv = huffman@46594: let huffman@46594: fun h t = huffman@46594: case (term_of t) of huffman@46594: b$_$_ => if member (op aconv) bops b then binop_conv h t else cv t huffman@46594: | u$_ => if member (op aconv) uops u then arg_conv h t else cv t huffman@46594: | _ => cv t huffman@46594: in h end; chaieb@31120: huffman@46594: fun cterm_of_rat x = huffman@46594: let huffman@46594: val (a, b) = Rat.quotient_of_rat x huffman@46594: in huffman@46594: if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a huffman@46594: else Thm.apply (Thm.apply @{cterm "op / :: real => _"} huffman@46594: (Numeral.mk_cnumber @{ctyp "real"} a)) huffman@46594: (Numeral.mk_cnumber @{ctyp "real"} b) huffman@46594: end; chaieb@31120: huffman@46594: fun dest_ratconst t = huffman@46594: case term_of t of huffman@46594: Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) huffman@46594: | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd) huffman@46594: fun is_ratconst t = can dest_ratconst t chaieb@31120: huffman@44454: (* huffman@46594: fun find_term p t = if p t then t else chaieb@31120: case t of chaieb@31120: a$b => (find_term p a handle TERM _ => find_term p b) chaieb@31120: | Abs (_,_,t') => find_term p t' chaieb@31120: | _ => raise TERM ("find_term",[t]); huffman@44454: *) chaieb@31120: huffman@46594: fun find_cterm p t = huffman@46594: if p t then t else huffman@46594: case term_of t of huffman@46594: _$_ => (find_cterm p (Thm.dest_fun t) handle CTERM _ => find_cterm p (Thm.dest_arg t)) huffman@46594: | Abs (_,_,_) => find_cterm p (Thm.dest_abs NONE t |> snd) huffman@46594: | _ => raise CTERM ("find_cterm",[t]); chaieb@31120: chaieb@31120: (* Some conversions-related stuff which has been forbidden entrance into Pure/conv.ML*) chaieb@31120: fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms) chaieb@31120: fun is_comb t = case (term_of t) of _$_ => true | _ => false; chaieb@31120: chaieb@31120: fun is_binop ct ct' = ct aconvc (Thm.dest_fun (Thm.dest_fun ct')) chaieb@31120: handle CTERM _ => false; chaieb@31120: Philipp@32645: Philipp@32645: (* Map back polynomials to HOL. *) Philipp@32645: huffman@46594: fun cterm_of_varpow x k = if k = 1 then x else Thm.apply (Thm.apply @{cterm "op ^ :: real => _"} x) Philipp@32828: (Numeral.mk_cnumber @{ctyp nat} k) Philipp@32645: huffman@46594: fun cterm_of_monomial m = huffman@46594: if FuncUtil.Ctermfunc.is_empty m then @{cterm "1::real"} huffman@46594: else huffman@46594: let huffman@46594: val m' = FuncUtil.dest_monomial m huffman@46594: val vps = fold_rev (fn (x,k) => cons (cterm_of_varpow x k)) m' [] huffman@46594: in foldr1 (fn (s, t) => Thm.apply (Thm.apply @{cterm "op * :: real => _"} s) t) vps huffman@46594: end Philipp@32645: huffman@46594: fun cterm_of_cmonomial (m,c) = huffman@46594: if FuncUtil.Ctermfunc.is_empty m then cterm_of_rat c huffman@46594: else if c = Rat.one then cterm_of_monomial m huffman@46594: else Thm.apply (Thm.apply @{cterm "op *::real => _"} (cterm_of_rat c)) (cterm_of_monomial m); Philipp@32645: huffman@46594: fun cterm_of_poly p = huffman@46594: if FuncUtil.Monomialfunc.is_empty p then @{cterm "0::real"} huffman@46594: else huffman@46594: let huffman@46594: val cms = map cterm_of_cmonomial huffman@46594: (sort (prod_ord FuncUtil.monomial_order (K EQUAL)) (FuncUtil.Monomialfunc.dest p)) huffman@46594: in foldr1 (fn (t1, t2) => Thm.apply(Thm.apply @{cterm "op + :: real => _"} t1) t2) cms huffman@46594: end; Philipp@32645: huffman@46594: (* A general real arithmetic prover *) chaieb@31120: chaieb@31120: fun gen_gen_real_arith ctxt (mk_numeric, chaieb@31120: numeric_eq_conv,numeric_ge_conv,numeric_gt_conv, chaieb@31120: poly_conv,poly_neg_conv,poly_add_conv,poly_mul_conv, huffman@46594: absconv1,absconv2,prover) = huffman@46594: let huffman@46594: val pre_ss = HOL_basic_ss addsimps huffman@46594: @{thms simp_thms ex_simps all_simps not_all not_ex ex_disj_distrib all_conj_distrib if_bool_eq_disj} huffman@46594: val prenex_ss = HOL_basic_ss addsimps prenex_simps huffman@46594: val skolemize_ss = HOL_basic_ss addsimps [choice_iff] huffman@46594: val presimp_conv = Simplifier.rewrite (Simplifier.context ctxt pre_ss) huffman@46594: val prenex_conv = Simplifier.rewrite (Simplifier.context ctxt prenex_ss) huffman@46594: val skolemize_conv = Simplifier.rewrite (Simplifier.context ctxt skolemize_ss) huffman@46594: val weak_dnf_ss = HOL_basic_ss addsimps weak_dnf_simps huffman@46594: val weak_dnf_conv = Simplifier.rewrite (Simplifier.context ctxt weak_dnf_ss) huffman@46594: fun eqT_elim th = Thm.equal_elim (Thm.symmetric th) @{thm TrueI} huffman@46594: fun oprconv cv ct = huffman@46594: let val g = Thm.dest_fun2 ct huffman@46594: in if g aconvc @{cterm "op <= :: real => _"} huffman@46594: orelse g aconvc @{cterm "op < :: real => _"} huffman@46594: then arg_conv cv ct else arg1_conv cv ct huffman@46594: end chaieb@31120: huffman@46594: fun real_ineq_conv th ct = huffman@46594: let huffman@46594: val th' = (Thm.instantiate (Thm.match (Thm.lhs_of th, ct)) th huffman@46594: handle Pattern.MATCH => raise CTERM ("real_ineq_conv", [ct])) huffman@46594: in Thm.transitive th' (oprconv poly_conv (Thm.rhs_of th')) huffman@46594: end huffman@46594: val [real_lt_conv, real_le_conv, real_eq_conv, huffman@46594: real_not_lt_conv, real_not_le_conv, _] = huffman@46594: map real_ineq_conv pth huffman@46594: fun match_mp_rule ths ths' = huffman@46594: let huffman@46594: fun f ths ths' = case ths of [] => raise THM("match_mp_rule",0,ths) huffman@46594: | th::ths => (ths' MRS th handle THM _ => f ths ths') huffman@46594: in f ths ths' end huffman@46594: fun mul_rule th th' = fconv_rule (arg_conv (oprconv poly_mul_conv)) chaieb@31120: (match_mp_rule pth_mul [th, th']) huffman@46594: fun add_rule th th' = fconv_rule (arg_conv (oprconv poly_add_conv)) chaieb@31120: (match_mp_rule pth_add [th, th']) huffman@46594: fun emul_rule ct th = fconv_rule (arg_conv (oprconv poly_mul_conv)) huffman@46594: (instantiate' [] [SOME ct] (th RS pth_emul)) huffman@46594: fun square_rule t = fconv_rule (arg_conv (oprconv poly_conv)) chaieb@31120: (instantiate' [] [SOME t] pth_square) chaieb@31120: huffman@46594: fun hol_of_positivstellensatz(eqs,les,lts) proof = huffman@46594: let huffman@46594: fun translate prf = huffman@46594: case prf of huffman@46594: Axiom_eq n => nth eqs n huffman@46594: | Axiom_le n => nth les n huffman@46594: | Axiom_lt n => nth lts n huffman@46594: | Rational_eq x => eqT_elim(numeric_eq_conv(Thm.apply @{cterm Trueprop} huffman@46594: (Thm.apply (Thm.apply @{cterm "op =::real => _"} (mk_numeric x)) chaieb@31120: @{cterm "0::real"}))) huffman@46594: | Rational_le x => eqT_elim(numeric_ge_conv(Thm.apply @{cterm Trueprop} huffman@46594: (Thm.apply (Thm.apply @{cterm "op <=::real => _"} chaieb@31120: @{cterm "0::real"}) (mk_numeric x)))) huffman@46594: | Rational_lt x => eqT_elim(numeric_gt_conv(Thm.apply @{cterm Trueprop} wenzelm@46497: (Thm.apply (Thm.apply @{cterm "op <::real => _"} @{cterm "0::real"}) chaieb@31120: (mk_numeric x)))) huffman@46594: | Square pt => square_rule (cterm_of_poly pt) huffman@46594: | Eqmul(pt,p) => emul_rule (cterm_of_poly pt) (translate p) huffman@46594: | Sum(p1,p2) => add_rule (translate p1) (translate p2) huffman@46594: | Product(p1,p2) => mul_rule (translate p1) (translate p2) huffman@46594: in fconv_rule (first_conv [numeric_ge_conv, numeric_gt_conv, numeric_eq_conv, all_conv]) chaieb@31120: (translate proof) huffman@46594: end huffman@46594: huffman@46594: val init_conv = presimp_conv then_conv huffman@46594: nnf_conv then_conv skolemize_conv then_conv prenex_conv then_conv huffman@46594: weak_dnf_conv chaieb@31120: huffman@46594: val concl = Thm.dest_arg o cprop_of huffman@46594: fun is_binop opr ct = (Thm.dest_fun2 ct aconvc opr handle CTERM _ => false) huffman@46594: val is_req = is_binop @{cterm "op =:: real => _"} huffman@46594: val is_ge = is_binop @{cterm "op <=:: real => _"} huffman@46594: val is_gt = is_binop @{cterm "op <:: real => _"} huffman@46594: val is_conj = is_binop @{cterm HOL.conj} huffman@46594: val is_disj = is_binop @{cterm HOL.disj} huffman@46594: fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) huffman@46594: fun disj_cases th th1 th2 = huffman@46594: let huffman@46594: val (p,q) = Thm.dest_binop (concl th) huffman@46594: val c = concl th1 huffman@46594: val _ = if c aconvc (concl th2) then () else error "disj_cases : conclusions not alpha convertible" huffman@46594: in Thm.implies_elim (Thm.implies_elim wenzelm@36945: (Thm.implies_elim (instantiate' [] (map SOME [p,q,c]) @{thm disjE}) th) wenzelm@46497: (Thm.implies_intr (Thm.apply @{cterm Trueprop} p) th1)) wenzelm@46497: (Thm.implies_intr (Thm.apply @{cterm Trueprop} q) th2) huffman@46594: end huffman@46594: fun overall cert_choice dun ths = huffman@46594: case ths of huffman@46594: [] => huffman@46594: let huffman@46594: val (eq,ne) = List.partition (is_req o concl) dun huffman@46594: val (le,nl) = List.partition (is_ge o concl) ne huffman@46594: val lt = filter (is_gt o concl) nl huffman@46594: in prover (rev cert_choice) hol_of_positivstellensatz (eq,le,lt) end huffman@46594: | th::oths => huffman@46594: let huffman@46594: val ct = concl th huffman@46594: in huffman@46594: if is_conj ct then huffman@46594: let huffman@46594: val (th1,th2) = conj_pair th huffman@46594: in overall cert_choice dun (th1::th2::oths) end huffman@46594: else if is_disj ct then huffman@46594: let huffman@46594: val (th1, cert1) = overall (Left::cert_choice) dun (Thm.assume (Thm.apply @{cterm Trueprop} (Thm.dest_arg1 ct))::oths) huffman@46594: val (th2, cert2) = overall (Right::cert_choice) dun (Thm.assume (Thm.apply @{cterm Trueprop} (Thm.dest_arg ct))::oths) huffman@46594: in (disj_cases th th1 th2, Branch (cert1, cert2)) end huffman@46594: else overall cert_choice (th::dun) oths huffman@46594: end huffman@46594: fun dest_binary b ct = huffman@46594: if is_binop b ct then Thm.dest_binop ct huffman@46594: else raise CTERM ("dest_binary",[b,ct]) huffman@46594: val dest_eq = dest_binary @{cterm "op = :: real => _"} huffman@46594: val neq_th = nth pth 5 huffman@46594: fun real_not_eq_conv ct = huffman@46594: let huffman@46594: val (l,r) = dest_eq (Thm.dest_arg ct) huffman@46594: val th = Thm.instantiate ([],[(@{cpat "?x::real"},l),(@{cpat "?y::real"},r)]) neq_th huffman@46594: val th_p = poly_conv(Thm.dest_arg(Thm.dest_arg1(Thm.rhs_of th))) huffman@46594: val th_x = Drule.arg_cong_rule @{cterm "uminus :: real => _"} th_p huffman@46594: val th_n = fconv_rule (arg_conv poly_neg_conv) th_x huffman@46594: val th' = Drule.binop_cong_rule @{cterm HOL.disj} huffman@46594: (Drule.arg_cong_rule (Thm.apply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_p) huffman@46594: (Drule.arg_cong_rule (Thm.apply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_n) huffman@46594: in Thm.transitive th th' huffman@46594: end huffman@46594: fun equal_implies_1_rule PQ = huffman@46594: let huffman@46594: val P = Thm.lhs_of PQ huffman@46594: in Thm.implies_intr P (Thm.equal_elim PQ (Thm.assume P)) huffman@46594: end huffman@46594: (* FIXME!!! Copied from groebner.ml *) huffman@46594: val strip_exists = huffman@46594: let huffman@46594: fun h (acc, t) = huffman@46594: case (term_of t) of huffman@46594: Const(@{const_name Ex},_)$Abs(_,_,_) => h (Thm.dest_abs NONE (Thm.dest_arg t) |>> (fn v => v::acc)) huffman@46594: | _ => (acc,t) huffman@46594: in fn t => h ([],t) huffman@46594: end huffman@46594: fun name_of x = huffman@46594: case term_of x of huffman@46594: Free(s,_) => s huffman@46594: | Var ((s,_),_) => s huffman@46594: | _ => "x" chaieb@31120: huffman@46594: fun mk_forall x th = Drule.arg_cong_rule (instantiate_cterm' [SOME (ctyp_of_term x)] [] @{cpat "All :: (?'a => bool) => _" }) (Thm.abstract_rule (name_of x) x th) chaieb@31120: huffman@46594: val specl = fold_rev (fn x => fn th => instantiate' [] [SOME x] (th RS spec)); chaieb@31120: huffman@46594: fun ext T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat Ex} huffman@46594: fun mk_ex v t = Thm.apply (ext (ctyp_of_term v)) (Thm.lambda v t) chaieb@31120: huffman@46594: fun choose v th th' = huffman@46594: case concl_of th of huffman@46594: @{term Trueprop} $ (Const(@{const_name Ex},_)$_) => huffman@46594: let huffman@46594: val p = (funpow 2 Thm.dest_arg o cprop_of) th huffman@46594: val T = (hd o Thm.dest_ctyp o ctyp_of_term) p huffman@46594: val th0 = fconv_rule (Thm.beta_conversion true) huffman@46594: (instantiate' [SOME T] [SOME p, (SOME o Thm.dest_arg o cprop_of) th'] exE) huffman@46594: val pv = (Thm.rhs_of o Thm.beta_conversion true) huffman@46594: (Thm.apply @{cterm Trueprop} (Thm.apply p v)) huffman@46594: val th1 = Thm.forall_intr v (Thm.implies_intr pv th') huffman@46594: in Thm.implies_elim (Thm.implies_elim th0 th) th1 end huffman@46594: | _ => raise THM ("choose",0,[th, th']) chaieb@31120: huffman@46594: fun simple_choose v th = huffman@46594: choose v (Thm.assume ((Thm.apply @{cterm Trueprop} o mk_ex v) ((Thm.dest_arg o hd o #hyps o Thm.crep_thm) th))) th chaieb@31120: huffman@46594: val strip_forall = huffman@46594: let huffman@46594: fun h (acc, t) = huffman@46594: case (term_of t) of huffman@46594: Const(@{const_name All},_)$Abs(_,_,_) => h (Thm.dest_abs NONE (Thm.dest_arg t) |>> (fn v => v::acc)) huffman@46594: | _ => (acc,t) huffman@46594: in fn t => h ([],t) huffman@46594: end chaieb@31120: huffman@46594: fun f ct = huffman@46594: let huffman@46594: val nnf_norm_conv' = huffman@46594: nnf_conv then_conv huffman@46594: literals_conv [@{term HOL.conj}, @{term HOL.disj}] [] huffman@46594: (Conv.cache_conv huffman@46594: (first_conv [real_lt_conv, real_le_conv, huffman@46594: real_eq_conv, real_not_lt_conv, huffman@46594: real_not_le_conv, real_not_eq_conv, all_conv])) huffman@46594: fun absremover ct = (literals_conv [@{term HOL.conj}, @{term HOL.disj}] [] huffman@46594: (try_conv (absconv1 then_conv binop_conv (arg_conv poly_conv))) then_conv huffman@46594: try_conv (absconv2 then_conv nnf_norm_conv' then_conv binop_conv absremover)) ct huffman@46594: val nct = Thm.apply @{cterm Trueprop} (Thm.apply @{cterm "Not"} ct) huffman@46594: val th0 = (init_conv then_conv arg_conv nnf_norm_conv') nct huffman@46594: val tm0 = Thm.dest_arg (Thm.rhs_of th0) huffman@46594: val (th, certificates) = huffman@46594: if tm0 aconvc @{cterm False} then (equal_implies_1_rule th0, Trivial) else huffman@46594: let huffman@46594: val (evs,bod) = strip_exists tm0 huffman@46594: val (avs,ibod) = strip_forall bod huffman@46594: val th1 = Drule.arg_cong_rule @{cterm Trueprop} (fold mk_forall avs (absremover ibod)) huffman@46594: val (th2, certs) = overall [] [] [specl avs (Thm.assume (Thm.rhs_of th1))] huffman@46594: val th3 = fold simple_choose evs (prove_hyp (Thm.equal_elim th1 (Thm.assume (Thm.apply @{cterm Trueprop} bod))) th2) huffman@46594: in (Drule.implies_intr_hyps (prove_hyp (Thm.equal_elim th0 (Thm.assume nct)) th3), certs) huffman@46594: end huffman@46594: in (Thm.implies_elim (instantiate' [] [SOME ct] pth_final) th, certificates) huffman@46594: end huffman@46594: in f huffman@46594: end; chaieb@31120: chaieb@31120: (* A linear arithmetic prover *) chaieb@31120: local Philipp@32828: val linear_add = FuncUtil.Ctermfunc.combine (curry op +/) (fn z => z =/ Rat.zero) haftmann@39027: fun linear_cmul c = FuncUtil.Ctermfunc.map (fn _ => fn x => c */ x) chaieb@31120: val one_tm = @{cterm "1::real"} Philipp@32829: fun contradictory p (e,_) = ((FuncUtil.Ctermfunc.is_empty e) andalso not(p Rat.zero)) orelse haftmann@33038: ((eq_set (op aconvc) (FuncUtil.Ctermfunc.dom e, [one_tm])) andalso Philipp@32829: not(p(FuncUtil.Ctermfunc.apply e one_tm))) chaieb@31120: huffman@46594: fun linear_ineqs vars (les,lts) = huffman@46594: case find_first (contradictory (fn x => x >/ Rat.zero)) lts of huffman@46594: SOME r => r huffman@46594: | NONE => huffman@46594: (case find_first (contradictory (fn x => x >/ Rat.zero)) les of huffman@46594: SOME r => r huffman@46594: | NONE => huffman@46594: if null vars then error "linear_ineqs: no contradiction" else huffman@46594: let huffman@46594: val ineqs = les @ lts huffman@46594: fun blowup v = huffman@46594: length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) ineqs) + huffman@46594: length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) ineqs) * huffman@46594: length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero int_ord (i,j)) huffman@46594: (map (fn v => (v,blowup v)) vars))) huffman@46594: fun addup (e1,p1) (e2,p2) acc = huffman@46594: let huffman@46594: val c1 = FuncUtil.Ctermfunc.tryapplyd e1 v Rat.zero huffman@46594: val c2 = FuncUtil.Ctermfunc.tryapplyd e2 v Rat.zero huffman@46594: in huffman@46594: if c1 */ c2 >=/ Rat.zero then acc else huffman@46594: let huffman@46594: val e1' = linear_cmul (Rat.abs c2) e1 huffman@46594: val e2' = linear_cmul (Rat.abs c1) e2 huffman@46594: val p1' = Product(Rational_lt(Rat.abs c2),p1) huffman@46594: val p2' = Product(Rational_lt(Rat.abs c1),p2) huffman@46594: in (linear_add e1' e2',Sum(p1',p2'))::acc huffman@46594: end huffman@46594: end huffman@46594: val (les0,les1) = huffman@46594: List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) les huffman@46594: val (lts0,lts1) = huffman@46594: List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) lts huffman@46594: val (lesp,lesn) = huffman@46594: List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) les1 huffman@46594: val (ltsp,ltsn) = huffman@46594: List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) lts1 huffman@46594: val les' = fold_rev (fn ep1 => fold_rev (addup ep1) lesp) lesn les0 huffman@46594: val lts' = fold_rev (fn ep1 => fold_rev (addup ep1) (lesp@ltsp)) ltsn chaieb@31120: (fold_rev (fn ep1 => fold_rev (addup ep1) (lesn@ltsn)) ltsp lts0) huffman@46594: in linear_ineqs (remove (op aconvc) v vars) (les',lts') huffman@46594: end) chaieb@31120: huffman@46594: fun linear_eqs(eqs,les,lts) = huffman@46594: case find_first (contradictory (fn x => x =/ Rat.zero)) eqs of huffman@46594: SOME r => r huffman@46594: | NONE => huffman@46594: (case eqs of huffman@46594: [] => huffman@46594: let val vars = remove (op aconvc) one_tm huffman@46594: (fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom o fst) (les@lts) []) huffman@46594: in linear_ineqs vars (les,lts) end huffman@46594: | (e,p)::es => huffman@46594: if FuncUtil.Ctermfunc.is_empty e then linear_eqs (es,les,lts) else huffman@46594: let huffman@46594: val (x,c) = FuncUtil.Ctermfunc.choose (FuncUtil.Ctermfunc.delete_safe one_tm e) huffman@46594: fun xform (inp as (t,q)) = huffman@46594: let val d = FuncUtil.Ctermfunc.tryapplyd t x Rat.zero in huffman@46594: if d =/ Rat.zero then inp else huffman@46594: let huffman@46594: val k = (Rat.neg d) */ Rat.abs c // c huffman@46594: val e' = linear_cmul k e huffman@46594: val t' = linear_cmul (Rat.abs c) t huffman@46594: val p' = Eqmul(FuncUtil.Monomialfunc.onefunc (FuncUtil.Ctermfunc.empty, k),p) huffman@46594: val q' = Product(Rational_lt(Rat.abs c),q) huffman@46594: in (linear_add e' t',Sum(p',q')) huffman@46594: end huffman@46594: end huffman@46594: in linear_eqs(map xform es,map xform les,map xform lts) huffman@46594: end) chaieb@31120: huffman@46594: fun linear_prover (eq,le,lt) = huffman@46594: let huffman@46594: val eqs = map_index (fn (n, p) => (p,Axiom_eq n)) eq huffman@46594: val les = map_index (fn (n, p) => (p,Axiom_le n)) le huffman@46594: val lts = map_index (fn (n, p) => (p,Axiom_lt n)) lt huffman@46594: in linear_eqs(eqs,les,lts) chaieb@31120: end chaieb@31120: huffman@46594: fun lin_of_hol ct = huffman@46594: if ct aconvc @{cterm "0::real"} then FuncUtil.Ctermfunc.empty huffman@46594: else if not (is_comb ct) then FuncUtil.Ctermfunc.onefunc (ct, Rat.one) huffman@46594: else if is_ratconst ct then FuncUtil.Ctermfunc.onefunc (one_tm, dest_ratconst ct) huffman@46594: else huffman@46594: let val (lop,r) = Thm.dest_comb ct huffman@46594: in huffman@46594: if not (is_comb lop) then FuncUtil.Ctermfunc.onefunc (ct, Rat.one) huffman@46594: else huffman@46594: let val (opr,l) = Thm.dest_comb lop huffman@46594: in huffman@46594: if opr aconvc @{cterm "op + :: real =>_"} huffman@46594: then linear_add (lin_of_hol l) (lin_of_hol r) huffman@46594: else if opr aconvc @{cterm "op * :: real =>_"} huffman@46594: andalso is_ratconst l then FuncUtil.Ctermfunc.onefunc (r, dest_ratconst l) huffman@46594: else FuncUtil.Ctermfunc.onefunc (ct, Rat.one) huffman@46594: end huffman@46594: end huffman@46594: huffman@46594: fun is_alien ct = huffman@46594: case term_of ct of huffman@46594: Const(@{const_name "real"}, _)$ n => huffman@46594: if can HOLogic.dest_number n then false else true huffman@46594: | _ => false huffman@46594: in huffman@46594: fun real_linear_prover translator (eq,le,lt) = huffman@46594: let huffman@46594: val lhs = lin_of_hol o Thm.dest_arg1 o Thm.dest_arg o cprop_of huffman@46594: val rhs = lin_of_hol o Thm.dest_arg o Thm.dest_arg o cprop_of huffman@46594: val eq_pols = map lhs eq huffman@46594: val le_pols = map rhs le huffman@46594: val lt_pols = map rhs lt huffman@46594: val aliens = filter is_alien huffman@46594: (fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom) huffman@46594: (eq_pols @ le_pols @ lt_pols) []) huffman@46594: val le_pols' = le_pols @ map (fn v => FuncUtil.Ctermfunc.onefunc (v,Rat.one)) aliens huffman@46594: val (_,proof) = linear_prover (eq_pols,le_pols',lt_pols) huffman@46594: val le' = le @ map (fn a => instantiate' [] [SOME (Thm.dest_arg a)] @{thm real_of_nat_ge_zero}) aliens huffman@46594: in ((translator (eq,le',lt) proof), Trivial) huffman@46594: end chaieb@31120: end; chaieb@31120: chaieb@31120: (* A less general generic arithmetic prover dealing with abs,max and min*) chaieb@31120: chaieb@31120: local huffman@46594: val absmaxmin_elim_ss1 = HOL_basic_ss addsimps real_abs_thms1 huffman@46594: fun absmaxmin_elim_conv1 ctxt = chaieb@31120: Simplifier.rewrite (Simplifier.context ctxt absmaxmin_elim_ss1) chaieb@31120: huffman@46594: val absmaxmin_elim_conv2 = huffman@46594: let huffman@46594: val pth_abs = instantiate' [SOME @{ctyp real}] [] abs_split' huffman@46594: val pth_max = instantiate' [SOME @{ctyp real}] [] max_split huffman@46594: val pth_min = instantiate' [SOME @{ctyp real}] [] min_split huffman@46594: val abs_tm = @{cterm "abs :: real => _"} huffman@46594: val p_tm = @{cpat "?P :: real => bool"} huffman@46594: val x_tm = @{cpat "?x :: real"} huffman@46594: val y_tm = @{cpat "?y::real"} huffman@46594: val is_max = is_binop @{cterm "max :: real => _"} huffman@46594: val is_min = is_binop @{cterm "min :: real => _"} huffman@46594: fun is_abs t = is_comb t andalso Thm.dest_fun t aconvc abs_tm huffman@46594: fun eliminate_construct p c tm = huffman@46594: let huffman@46594: val t = find_cterm p tm huffman@46594: val th0 = (Thm.symmetric o Thm.beta_conversion false) (Thm.apply (Thm.lambda t tm) t) huffman@46594: val (p,ax) = (Thm.dest_comb o Thm.rhs_of) th0 huffman@46594: in fconv_rule(arg_conv(binop_conv (arg_conv (Thm.beta_conversion false)))) huffman@46594: (Thm.transitive th0 (c p ax)) huffman@46594: end chaieb@31120: huffman@46594: val elim_abs = eliminate_construct is_abs huffman@46594: (fn p => fn ax => huffman@46594: Thm.instantiate ([], [(p_tm,p), (x_tm, Thm.dest_arg ax)]) pth_abs) huffman@46594: val elim_max = eliminate_construct is_max huffman@46594: (fn p => fn ax => huffman@46594: let val (ax,y) = Thm.dest_comb ax huffman@46594: in Thm.instantiate ([], [(p_tm,p), (x_tm, Thm.dest_arg ax), (y_tm,y)]) huffman@46594: pth_max end) huffman@46594: val elim_min = eliminate_construct is_min huffman@46594: (fn p => fn ax => huffman@46594: let val (ax,y) = Thm.dest_comb ax huffman@46594: in Thm.instantiate ([], [(p_tm,p), (x_tm, Thm.dest_arg ax), (y_tm,y)]) huffman@46594: pth_min end) huffman@46594: in first_conv [elim_abs, elim_max, elim_min, all_conv] huffman@46594: end; huffman@46594: in huffman@46594: fun gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul,prover) = huffman@46594: gen_gen_real_arith ctxt huffman@46594: (mkconst,eq,ge,gt,norm,neg,add,mul, huffman@46594: absmaxmin_elim_conv1 ctxt,absmaxmin_elim_conv2,prover) chaieb@31120: end; chaieb@31120: huffman@46594: (* An instance for reals*) chaieb@31120: huffman@46594: fun gen_prover_real_arith ctxt prover = huffman@46594: let huffman@46594: fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS huffman@46594: val {add, mul, neg, pow = _, sub = _, main} = huffman@46594: Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt huffman@46594: (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) huffman@46594: simple_cterm_ord huffman@46594: in gen_real_arith ctxt huffman@46594: (cterm_of_rat, Numeral_Simprocs.field_comp_conv, Numeral_Simprocs.field_comp_conv, Numeral_Simprocs.field_comp_conv, huffman@46594: main,neg,add,mul, prover) huffman@46594: end; chaieb@31120: chaieb@31120: end