nipkow@15524: (* Title: HOL/Orderings.thy nipkow@15524: ID: $Id$ nipkow@15524: Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson nipkow@15524: *) nipkow@15524: haftmann@21329: header {* Syntactic and abstract orders *} nipkow@15524: nipkow@15524: theory Orderings haftmann@21329: imports HOL nipkow@15524: begin nipkow@15524: haftmann@21329: subsection {* Order syntax *} nipkow@15524: haftmann@21194: class ord = wenzelm@21656: fixes less_eq :: "'a \ 'a \ bool" (infix "\" 50) wenzelm@21656: and less :: "'a \ 'a \ bool" (infix "\" 50) wenzelm@21204: begin wenzelm@21204: wenzelm@21204: notation wenzelm@21656: less_eq ("op \<^loc><=") and haftmann@21620: less_eq ("(_/ \<^loc><= _)" [51, 51] 50) and wenzelm@21656: less ("op \<^loc><") and wenzelm@21656: less ("(_/ \<^loc>< _)" [51, 51] 50) haftmann@21620: wenzelm@21204: notation (xsymbols) wenzelm@21404: less_eq ("op \<^loc>\") and wenzelm@21259: less_eq ("(_/ \<^loc>\ _)" [51, 51] 50) nipkow@15524: wenzelm@21204: notation (HTML output) wenzelm@21404: less_eq ("op \<^loc>\") and wenzelm@21259: less_eq ("(_/ \<^loc>\ _)" [51, 51] 50) wenzelm@21204: wenzelm@21204: abbreviation (input) wenzelm@21656: greater (infix "\<^loc>>" 50) where haftmann@21620: "x \<^loc>> y \ y \<^loc>< x" haftmann@21620: wenzelm@21656: abbreviation (input) wenzelm@21656: greater_eq (infix "\<^loc>>=" 50) where wenzelm@21656: "x \<^loc>>= y \ y \<^loc><= x" wenzelm@21204: wenzelm@21656: notation (input) wenzelm@21656: greater_eq (infix "\<^loc>\" 50) wenzelm@21204: wenzelm@21204: end wenzelm@21204: wenzelm@21204: notation wenzelm@21656: less_eq ("op <=") and haftmann@21620: less_eq ("(_/ <= _)" [51, 51] 50) and wenzelm@21656: less ("op <") and wenzelm@21656: less ("(_/ < _)" [51, 51] 50) wenzelm@21204: wenzelm@21204: notation (xsymbols) wenzelm@21404: less_eq ("op \") and wenzelm@21259: less_eq ("(_/ \ _)" [51, 51] 50) nipkow@15524: wenzelm@21204: notation (HTML output) wenzelm@21404: less_eq ("op \") and wenzelm@21259: less_eq ("(_/ \ _)" [51, 51] 50) haftmann@20714: wenzelm@19536: abbreviation (input) wenzelm@21656: greater (infix ">" 50) where haftmann@21620: "x > y \ y < x" haftmann@21620: wenzelm@21656: abbreviation (input) wenzelm@21656: greater_eq (infix ">=" 50) where wenzelm@21656: "x >= y \ y <= x" haftmann@21620: wenzelm@21656: notation (input) wenzelm@21656: greater_eq (infix "\" 50) nipkow@15524: nipkow@15524: haftmann@21329: subsection {* Quasiorders (preorders) *} nipkow@15524: haftmann@22316: class preorder = ord + haftmann@22316: assumes less_le: "x \ y \ x \ y \ x \ y" haftmann@22316: and refl [iff]: "x \ x" haftmann@21216: and trans: "x \ y \ y \ z \ x \ z" haftmann@21248: begin haftmann@21248: nipkow@15524: text {* Reflexivity. *} nipkow@15524: haftmann@21248: lemma eq_refl: "x = y \ x \ y" nipkow@15524: -- {* This form is useful with the classical reasoner. *} haftmann@21248: by (erule ssubst) (rule refl) nipkow@15524: haftmann@21248: lemma less_irrefl [iff]: "\ x \ x" haftmann@21248: by (simp add: less_le) nipkow@15524: haftmann@21248: lemma le_less: "x \ y \ x \ y \ x = y" nipkow@15524: -- {* NOT suitable for iff, since it can cause PROOF FAILED. *} haftmann@21248: by (simp add: less_le) blast nipkow@15524: haftmann@21248: lemma le_imp_less_or_eq: "x \ y \ x \ y \ x = y" haftmann@21248: unfolding less_le by blast nipkow@15524: haftmann@21248: lemma less_imp_le: "x \ y \ x \ y" haftmann@21248: unfolding less_le by blast haftmann@21248: haftmann@21329: lemma less_imp_neq: "x \ y \ x \ y" haftmann@21329: by (erule contrapos_pn, erule subst, rule less_irrefl) haftmann@21329: haftmann@21329: haftmann@21329: text {* Useful for simplification, but too risky to include by default. *} haftmann@21329: haftmann@21329: lemma less_imp_not_eq: "x \ y \ (x = y) \ False" haftmann@21329: by auto haftmann@21329: haftmann@21329: lemma less_imp_not_eq2: "x \ y \ (y = x) \ False" haftmann@21329: by auto haftmann@21329: haftmann@21329: haftmann@21329: text {* Transitivity rules for calculational reasoning *} haftmann@21329: haftmann@21329: lemma neq_le_trans: "\ a \ b; a \ b \ \ a \ b" haftmann@21329: by (simp add: less_le) haftmann@21329: haftmann@21329: lemma le_neq_trans: "\ a \ b; a \ b \ \ a \ b" haftmann@21329: by (simp add: less_le) haftmann@21329: haftmann@21329: end haftmann@21329: haftmann@21329: haftmann@21329: subsection {* Partial orderings *} haftmann@21329: haftmann@22316: class order = preorder + haftmann@21329: assumes antisym: "x \ y \ y \ x \ x = y" haftmann@21329: haftmann@22068: context order haftmann@21329: begin nipkow@15524: nipkow@15524: text {* Asymmetry. *} nipkow@15524: haftmann@21248: lemma less_not_sym: "x \ y \ \ (y \ x)" haftmann@21248: by (simp add: less_le antisym) nipkow@15524: haftmann@21248: lemma less_asym: "x \ y \ (\ P \ y \ x) \ P" haftmann@21248: by (drule less_not_sym, erule contrapos_np) simp nipkow@15524: haftmann@21248: lemma eq_iff: "x = y \ x \ y \ y \ x" haftmann@21248: by (blast intro: antisym) nipkow@15524: haftmann@21248: lemma antisym_conv: "y \ x \ x \ y \ x = y" haftmann@21248: by (blast intro: antisym) nipkow@15524: haftmann@21248: lemma less_imp_neq: "x \ y \ x \ y" haftmann@21248: by (erule contrapos_pn, erule subst, rule less_irrefl) haftmann@21248: haftmann@21083: nipkow@15524: text {* Transitivity. *} nipkow@15524: haftmann@21248: lemma less_trans: "\ x \ y; y \ z \ \ x \ z" haftmann@21248: by (simp add: less_le) (blast intro: trans antisym) nipkow@15524: haftmann@21248: lemma le_less_trans: "\ x \ y; y \ z \ \ x \ z" haftmann@21248: by (simp add: less_le) (blast intro: trans antisym) nipkow@15524: haftmann@21248: lemma less_le_trans: "\ x \ y; y \ z \ \ x \ z" haftmann@21248: by (simp add: less_le) (blast intro: trans antisym) nipkow@15524: nipkow@15524: nipkow@15524: text {* Useful for simplification, but too risky to include by default. *} nipkow@15524: haftmann@21248: lemma less_imp_not_less: "x \ y \ (\ y \ x) \ True" haftmann@21248: by (blast elim: less_asym) nipkow@15524: haftmann@21248: lemma less_imp_triv: "x \ y \ (y \ x \ P) \ True" haftmann@21248: by (blast elim: less_asym) nipkow@15524: haftmann@21248: haftmann@21083: text {* Transitivity rules for calculational reasoning *} nipkow@15524: haftmann@21248: lemma less_asym': "\ a \ b; b \ a \ \ P" haftmann@21248: by (rule less_asym) haftmann@21248: haftmann@21248: end nipkow@15524: haftmann@21329: haftmann@21329: subsection {* Linear (total) orders *} haftmann@21329: haftmann@22316: class linorder = order + haftmann@21216: assumes linear: "x \ y \ y \ x" haftmann@21248: begin haftmann@21248: haftmann@21412: lemma less_linear: "x \ y \ x = y \ y \ x" haftmann@21248: unfolding less_le using less_le linear by blast haftmann@21248: haftmann@21248: lemma le_less_linear: "x \ y \ y \ x" haftmann@21412: by (simp add: le_less less_linear) haftmann@21248: haftmann@21248: lemma le_cases [case_names le ge]: haftmann@21248: "\ x \ y \ P; y \ x \ P\ \ P" haftmann@21248: using linear by blast haftmann@21248: haftmann@21248: lemma cases [case_names less equal greater]: haftmann@21248: "\ x \ y \ P; x = y \ P; y \ x \ P\ \ P" haftmann@21412: using less_linear by blast haftmann@21248: haftmann@21248: lemma not_less: "\ x \ y \ y \ x" haftmann@21248: apply (simp add: less_le) haftmann@21248: using linear apply (blast intro: antisym) nipkow@15524: done nipkow@15524: haftmann@21248: lemma not_le: "\ x \ y \ y \ x" haftmann@21248: apply (simp add: less_le) haftmann@21248: using linear apply (blast intro: antisym) nipkow@15524: done nipkow@15524: haftmann@21248: lemma neq_iff: "x \ y \ x \ y \ y \ x" haftmann@21412: by (cut_tac x = x and y = y in less_linear, auto) nipkow@15524: haftmann@21248: lemma neqE: "\ x \ y; x \ y \ R; y \ x \ R\ \ R" haftmann@21248: by (simp add: neq_iff) blast nipkow@15524: haftmann@21248: lemma antisym_conv1: "\ x \ y \ x \ y \ x = y" haftmann@21248: by (blast intro: antisym dest: not_less [THEN iffD1]) nipkow@15524: haftmann@21248: lemma antisym_conv2: "x \ y \ \ x \ y \ x = y" haftmann@21248: by (blast intro: antisym dest: not_less [THEN iffD1]) nipkow@15524: haftmann@21248: lemma antisym_conv3: "\ y \ x \ \ x \ y \ x = y" haftmann@21248: by (blast intro: antisym dest: not_less [THEN iffD1]) nipkow@15524: paulson@16796: text{*Replacing the old Nat.leI*} haftmann@21248: lemma leI: "\ x \ y \ y \ x" haftmann@21248: unfolding not_less . paulson@16796: haftmann@21248: lemma leD: "y \ x \ \ x \ y" haftmann@21248: unfolding not_less . paulson@16796: paulson@16796: (*FIXME inappropriate name (or delete altogether)*) haftmann@21248: lemma not_leE: "\ y \ x \ x \ y" haftmann@21248: unfolding not_le . haftmann@21248: haftmann@21383: (* min/max *) haftmann@21383: haftmann@21383: definition wenzelm@21404: min :: "'a \ 'a \ 'a" where haftmann@21383: "min a b = (if a \ b then a else b)" wenzelm@21404: wenzelm@21404: definition wenzelm@21404: max :: "'a \ 'a \ 'a" where haftmann@21383: "max a b = (if a \ b then b else a)" haftmann@21383: haftmann@21383: lemma min_le_iff_disj: haftmann@21383: "min x y \ z \ x \ z \ y \ z" haftmann@21383: unfolding min_def using linear by (auto intro: trans) haftmann@21383: haftmann@21383: lemma le_max_iff_disj: haftmann@21383: "z \ max x y \ z \ x \ z \ y" haftmann@21383: unfolding max_def using linear by (auto intro: trans) haftmann@21383: haftmann@21383: lemma min_less_iff_disj: haftmann@21383: "min x y \ z \ x \ z \ y \ z" haftmann@21412: unfolding min_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma less_max_iff_disj: haftmann@21383: "z \ max x y \ z \ x \ z \ y" haftmann@21412: unfolding max_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma min_less_iff_conj [simp]: haftmann@21383: "z \ min x y \ z \ x \ z \ y" haftmann@21412: unfolding min_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma max_less_iff_conj [simp]: haftmann@21383: "max x y \ z \ x \ z \ y \ z" haftmann@21412: unfolding max_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma split_min: haftmann@21383: "P (min i j) \ (i \ j \ P i) \ (\ i \ j \ P j)" haftmann@21383: by (simp add: min_def) haftmann@21383: haftmann@21383: lemma split_max: haftmann@21383: "P (max i j) \ (i \ j \ P j) \ (\ i \ j \ P i)" haftmann@21383: by (simp add: max_def) haftmann@21383: haftmann@21248: end haftmann@21248: haftmann@21248: haftmann@21248: subsection {* Name duplicates *} haftmann@21248: haftmann@22316: lemmas order_refl [iff] = preorder_class.refl haftmann@22316: lemmas order_trans = preorder_class.trans haftmann@22316: lemmas order_less_le = preorder_class.less_le haftmann@22316: lemmas order_eq_refl = preorder_class.eq_refl haftmann@22316: lemmas order_less_irrefl = preorder_class.less_irrefl haftmann@22316: lemmas order_le_less = preorder_class.le_less haftmann@22316: lemmas order_le_imp_less_or_eq = preorder_class.le_imp_less_or_eq haftmann@22316: lemmas order_less_imp_le = preorder_class.less_imp_le haftmann@22316: lemmas order_less_imp_not_eq = preorder_class.less_imp_not_eq haftmann@22316: lemmas order_less_imp_not_eq2 = preorder_class.less_imp_not_eq2 haftmann@22316: lemmas order_neq_le_trans = preorder_class.neq_le_trans haftmann@22316: lemmas order_le_neq_trans = preorder_class.le_neq_trans haftmann@22316: haftmann@22316: lemmas order_antisym = order_class.antisym haftmann@22316: lemmas order_less_not_sym = order_class.less_not_sym haftmann@22316: lemmas order_less_asym = order_class.less_asym haftmann@22316: lemmas order_eq_iff = order_class.eq_iff haftmann@22316: lemmas order_antisym_conv = order_class.antisym_conv haftmann@22316: lemmas less_imp_neq = order_class.less_imp_neq haftmann@22316: lemmas order_less_trans = order_class.less_trans haftmann@22316: lemmas order_le_less_trans = order_class.le_less_trans haftmann@22316: lemmas order_less_le_trans = order_class.less_le_trans haftmann@22316: lemmas order_less_imp_not_less = order_class.less_imp_not_less haftmann@22316: lemmas order_less_imp_triv = order_class.less_imp_triv haftmann@22316: lemmas order_less_asym' = order_class.less_asym' haftmann@22316: haftmann@22316: lemmas linorder_linear = linorder_class.linear haftmann@22316: lemmas linorder_less_linear = linorder_class.less_linear haftmann@22316: lemmas linorder_le_less_linear = linorder_class.le_less_linear haftmann@22316: lemmas linorder_le_cases = linorder_class.le_cases haftmann@22316: lemmas linorder_cases = linorder_class.cases haftmann@22316: lemmas linorder_not_less = linorder_class.not_less haftmann@22316: lemmas linorder_not_le = linorder_class.not_le haftmann@22316: lemmas linorder_neq_iff = linorder_class.neq_iff haftmann@22316: lemmas linorder_neqE = linorder_class.neqE haftmann@22316: lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 haftmann@22316: lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 haftmann@22316: lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 haftmann@22316: lemmas leI = linorder_class.leI haftmann@22316: lemmas leD = linorder_class.leD haftmann@22316: lemmas not_leE = linorder_class.not_leE paulson@16796: haftmann@21083: haftmann@21083: subsection {* Reasoning tools setup *} haftmann@21083: haftmann@21091: ML {* haftmann@21091: local haftmann@21091: haftmann@21091: fun decomp_gen sort thy (Trueprop $ t) = haftmann@21248: let haftmann@21248: fun of_sort t = haftmann@21248: let haftmann@21248: val T = type_of t haftmann@21248: in haftmann@21091: (* exclude numeric types: linear arithmetic subsumes transitivity *) haftmann@21248: T <> HOLogic.natT andalso T <> HOLogic.intT haftmann@21248: andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort) haftmann@21248: end; haftmann@21248: fun dec (Const ("Not", _) $ t) = (case dec t haftmann@21248: of NONE => NONE haftmann@21248: | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) haftmann@21248: | dec (Const ("op =", _) $ t1 $ t2) = haftmann@21248: if of_sort t1 haftmann@21248: then SOME (t1, "=", t2) haftmann@21248: else NONE haftmann@21248: | dec (Const ("Orderings.less_eq", _) $ t1 $ t2) = haftmann@21248: if of_sort t1 haftmann@21248: then SOME (t1, "<=", t2) haftmann@21248: else NONE haftmann@21248: | dec (Const ("Orderings.less", _) $ t1 $ t2) = haftmann@21248: if of_sort t1 haftmann@21248: then SOME (t1, "<", t2) haftmann@21248: else NONE haftmann@21248: | dec _ = NONE; haftmann@21091: in dec t end; haftmann@21091: haftmann@21091: in haftmann@21091: haftmann@21091: (* The setting up of Quasi_Tac serves as a demo. Since there is no haftmann@21091: class for quasi orders, the tactics Quasi_Tac.trans_tac and haftmann@21091: Quasi_Tac.quasi_tac are not of much use. *) haftmann@21091: haftmann@21248: structure Quasi_Tac = Quasi_Tac_Fun ( haftmann@21248: struct haftmann@21248: val le_trans = thm "order_trans"; haftmann@21248: val le_refl = thm "order_refl"; haftmann@21248: val eqD1 = thm "order_eq_refl"; haftmann@21248: val eqD2 = thm "sym" RS thm "order_eq_refl"; haftmann@21248: val less_reflE = thm "order_less_irrefl" RS thm "notE"; haftmann@21248: val less_imp_le = thm "order_less_imp_le"; haftmann@21248: val le_neq_trans = thm "order_le_neq_trans"; haftmann@21248: val neq_le_trans = thm "order_neq_le_trans"; haftmann@21248: val less_imp_neq = thm "less_imp_neq"; haftmann@21248: val decomp_trans = decomp_gen ["Orderings.order"]; haftmann@21248: val decomp_quasi = decomp_gen ["Orderings.order"]; haftmann@21248: end); haftmann@21091: haftmann@21091: structure Order_Tac = Order_Tac_Fun ( haftmann@21248: struct haftmann@21248: val less_reflE = thm "order_less_irrefl" RS thm "notE"; haftmann@21248: val le_refl = thm "order_refl"; haftmann@21248: val less_imp_le = thm "order_less_imp_le"; haftmann@21248: val not_lessI = thm "linorder_not_less" RS thm "iffD2"; haftmann@21248: val not_leI = thm "linorder_not_le" RS thm "iffD2"; haftmann@21248: val not_lessD = thm "linorder_not_less" RS thm "iffD1"; haftmann@21248: val not_leD = thm "linorder_not_le" RS thm "iffD1"; haftmann@21248: val eqI = thm "order_antisym"; haftmann@21248: val eqD1 = thm "order_eq_refl"; haftmann@21248: val eqD2 = thm "sym" RS thm "order_eq_refl"; haftmann@21248: val less_trans = thm "order_less_trans"; haftmann@21248: val less_le_trans = thm "order_less_le_trans"; haftmann@21248: val le_less_trans = thm "order_le_less_trans"; haftmann@21248: val le_trans = thm "order_trans"; haftmann@21248: val le_neq_trans = thm "order_le_neq_trans"; haftmann@21248: val neq_le_trans = thm "order_neq_le_trans"; haftmann@21248: val less_imp_neq = thm "less_imp_neq"; haftmann@21248: val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq"; haftmann@21248: val not_sym = thm "not_sym"; haftmann@21248: val decomp_part = decomp_gen ["Orderings.order"]; haftmann@21248: val decomp_lin = decomp_gen ["Orderings.linorder"]; haftmann@21248: end); haftmann@21091: haftmann@21091: end; haftmann@21091: *} haftmann@21091: haftmann@21083: setup {* haftmann@21083: let haftmann@21083: haftmann@21083: val order_antisym_conv = thm "order_antisym_conv" haftmann@21083: val linorder_antisym_conv1 = thm "linorder_antisym_conv1" haftmann@21083: val linorder_antisym_conv2 = thm "linorder_antisym_conv2" haftmann@21083: val linorder_antisym_conv3 = thm "linorder_antisym_conv3" haftmann@21083: haftmann@21083: fun prp t thm = (#prop (rep_thm thm) = t); nipkow@15524: haftmann@21083: fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = haftmann@21083: let val prems = prems_of_ss ss; haftmann@21083: val less = Const("Orderings.less",T); haftmann@21083: val t = HOLogic.mk_Trueprop(le $ s $ r); haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => haftmann@21083: let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => NONE haftmann@21083: | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv1)) haftmann@21083: end haftmann@21083: | SOME thm => SOME(mk_meta_eq(thm RS order_antisym_conv)) haftmann@21083: end haftmann@21083: handle THM _ => NONE; nipkow@15524: haftmann@21083: fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = haftmann@21083: let val prems = prems_of_ss ss; haftmann@21083: val le = Const("Orderings.less_eq",T); haftmann@21083: val t = HOLogic.mk_Trueprop(le $ r $ s); haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => haftmann@21083: let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => NONE haftmann@21083: | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv3)) haftmann@21083: end haftmann@21083: | SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv2)) haftmann@21083: end haftmann@21083: handle THM _ => NONE; nipkow@15524: haftmann@21248: fun add_simprocs procs thy = haftmann@21248: (Simplifier.change_simpset_of thy (fn ss => ss haftmann@21248: addsimprocs (map (fn (name, raw_ts, proc) => haftmann@21248: Simplifier.simproc thy name raw_ts proc)) procs); thy); haftmann@21248: fun add_solver name tac thy = haftmann@21248: (Simplifier.change_simpset_of thy (fn ss => ss addSolver haftmann@21248: (mk_solver name (K tac))); thy); haftmann@21083: haftmann@21083: in haftmann@21248: add_simprocs [ haftmann@21248: ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), haftmann@21248: ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) haftmann@21248: ] haftmann@21248: #> add_solver "Trans_linear" Order_Tac.linear_tac haftmann@21248: #> add_solver "Trans_partial" Order_Tac.partial_tac haftmann@21248: (* Adding the transitivity reasoners also as safe solvers showed a slight haftmann@21248: speed up, but the reasoning strength appears to be not higher (at least haftmann@21248: no breaking of additional proofs in the entire HOL distribution, as haftmann@21248: of 5 March 2004, was observed). *) haftmann@21083: end haftmann@21083: *} nipkow@15524: nipkow@15524: haftmann@21083: subsection {* Bounded quantifiers *} haftmann@21083: haftmann@21083: syntax wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) haftmann@21083: wenzelm@21180: "_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: syntax (xsymbols) wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: wenzelm@21180: "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: syntax (HOL) wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: syntax (HTML output) wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: wenzelm@21180: "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: translations haftmann@21083: "ALL x "ALL x. x < y \ P" haftmann@21083: "EX x "EX x. x < y \ P" haftmann@21083: "ALL x<=y. P" => "ALL x. x <= y \ P" haftmann@21083: "EX x<=y. P" => "EX x. x <= y \ P" haftmann@21083: "ALL x>y. P" => "ALL x. x > y \ P" haftmann@21083: "EX x>y. P" => "EX x. x > y \ P" haftmann@21083: "ALL x>=y. P" => "ALL x. x >= y \ P" haftmann@21083: "EX x>=y. P" => "EX x. x >= y \ P" haftmann@21083: haftmann@21083: print_translation {* haftmann@21083: let wenzelm@21180: val syntax_name = Sign.const_syntax_name (the_context ()); wenzelm@21524: val binder_name = Syntax.binder_name o syntax_name; wenzelm@21524: val All_binder = binder_name "All"; wenzelm@21524: val Ex_binder = binder_name "Ex"; wenzelm@21180: val impl = syntax_name "op -->"; wenzelm@21180: val conj = syntax_name "op &"; wenzelm@21180: val less = syntax_name "Orderings.less"; wenzelm@21180: val less_eq = syntax_name "Orderings.less_eq"; wenzelm@21180: wenzelm@21180: val trans = wenzelm@21524: [((All_binder, impl, less), ("_All_less", "_All_greater")), wenzelm@21524: ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")), wenzelm@21524: ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")), wenzelm@21524: ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))]; wenzelm@21180: krauss@22344: fun matches_bound v t = krauss@22344: case t of (Const ("_bound", _) $ Free (v', _)) => (v = v') krauss@22344: | _ => false krauss@22344: fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) krauss@22344: fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P wenzelm@21180: wenzelm@21180: fun tr' q = (q, wenzelm@21180: fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => wenzelm@21180: (case AList.lookup (op =) trans (q, c, d) of wenzelm@21180: NONE => raise Match wenzelm@21180: | SOME (l, g) => krauss@22344: if matches_bound v t andalso not (contains_var v u) then mk v l u P krauss@22344: else if matches_bound v u andalso not (contains_var v t) then mk v g t P krauss@22344: else raise Match) wenzelm@21180: | _ => raise Match); wenzelm@21524: in [tr' All_binder, tr' Ex_binder] end haftmann@21083: *} haftmann@21083: haftmann@21083: haftmann@21383: subsection {* Transitivity reasoning *} haftmann@21383: haftmann@21383: lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" haftmann@21383: by (rule subst) haftmann@21383: haftmann@21383: lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" haftmann@21383: by (rule ssubst) haftmann@21383: haftmann@21383: lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" haftmann@21383: by (rule subst) haftmann@21383: haftmann@21383: lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" haftmann@21383: by (rule ssubst) haftmann@21383: haftmann@21383: lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < b" hence "f a < f b" by (rule r) haftmann@21383: also assume "f b < c" haftmann@21383: finally (order_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < f b" haftmann@21383: also assume "b < c" hence "f b < f c" by (rule r) haftmann@21383: finally (order_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= b" hence "f a <= f b" by (rule r) haftmann@21383: also assume "f b < c" haftmann@21383: finally (order_le_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a <= f b" haftmann@21383: also assume "b < c" hence "f b < f c" by (rule r) haftmann@21383: finally (order_le_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < b" hence "f a < f b" by (rule r) haftmann@21383: also assume "f b <= c" haftmann@21383: finally (order_less_le_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a < f b" haftmann@21383: also assume "b <= c" hence "f b <= f c" by (rule r) haftmann@21383: finally (order_less_le_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> a <= f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= f b" haftmann@21383: also assume "b <= c" hence "f b <= f c" by (rule r) haftmann@21383: finally (order_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> f a <= c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= b" hence "f a <= f b" by (rule r) haftmann@21383: also assume "f b <= c" haftmann@21383: finally (order_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_le_eq_subst: "a <= b ==> f b = c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> f a <= c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= b" hence "f a <= f b" by (rule r) haftmann@21383: also assume "f b = c" haftmann@21383: finally (ord_le_eq_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_eq_le_subst: "a = f b ==> b <= c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> a <= f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a = f b" haftmann@21383: also assume "b <= c" hence "f b <= f c" by (rule r) haftmann@21383: finally (ord_eq_le_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_less_eq_subst: "a < b ==> f b = c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < b" hence "f a < f b" by (rule r) haftmann@21383: also assume "f b = c" haftmann@21383: finally (ord_less_eq_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_eq_less_subst: "a = f b ==> b < c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a = f b" haftmann@21383: also assume "b < c" hence "f b < f c" by (rule r) haftmann@21383: finally (ord_eq_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: text {* haftmann@21383: Note that this list of rules is in reverse order of priorities. haftmann@21383: *} haftmann@21383: haftmann@21383: lemmas order_trans_rules [trans] = haftmann@21383: order_less_subst2 haftmann@21383: order_less_subst1 haftmann@21383: order_le_less_subst2 haftmann@21383: order_le_less_subst1 haftmann@21383: order_less_le_subst2 haftmann@21383: order_less_le_subst1 haftmann@21383: order_subst2 haftmann@21383: order_subst1 haftmann@21383: ord_le_eq_subst haftmann@21383: ord_eq_le_subst haftmann@21383: ord_less_eq_subst haftmann@21383: ord_eq_less_subst haftmann@21383: forw_subst haftmann@21383: back_subst haftmann@21383: rev_mp haftmann@21383: mp haftmann@21383: order_neq_le_trans haftmann@21383: order_le_neq_trans haftmann@21383: order_less_trans haftmann@21383: order_less_asym' haftmann@21383: order_le_less_trans haftmann@21383: order_less_le_trans haftmann@21383: order_trans haftmann@21383: order_antisym haftmann@21383: ord_le_eq_trans haftmann@21383: ord_eq_le_trans haftmann@21383: ord_less_eq_trans haftmann@21383: ord_eq_less_trans haftmann@21383: trans haftmann@21383: haftmann@21083: wenzelm@21180: (* FIXME cleanup *) wenzelm@21180: haftmann@21083: text {* These support proving chains of decreasing inequalities haftmann@21083: a >= b >= c ... in Isar proofs. *} haftmann@21083: haftmann@21083: lemma xt1: haftmann@21083: "a = b ==> b > c ==> a > c" haftmann@21083: "a > b ==> b = c ==> a > c" haftmann@21083: "a = b ==> b >= c ==> a >= c" haftmann@21083: "a >= b ==> b = c ==> a >= c" haftmann@21083: "(x::'a::order) >= y ==> y >= x ==> x = y" haftmann@21083: "(x::'a::order) >= y ==> y >= z ==> x >= z" haftmann@21083: "(x::'a::order) > y ==> y >= z ==> x > z" haftmann@21083: "(x::'a::order) >= y ==> y > z ==> x > z" haftmann@21083: "(a::'a::order) > b ==> b > a ==> ?P" haftmann@21083: "(x::'a::order) > y ==> y > z ==> x > z" haftmann@21083: "(a::'a::order) >= b ==> a ~= b ==> a > b" haftmann@21083: "(a::'a::order) ~= b ==> a >= b ==> a > b" haftmann@21083: "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" haftmann@21083: "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" haftmann@21083: "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" haftmann@21083: "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" haftmann@21083: by auto haftmann@21083: haftmann@21083: lemma xt2: haftmann@21083: "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" haftmann@21083: by (subgoal_tac "f b >= f c", force, force) haftmann@21083: haftmann@21083: lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> haftmann@21083: (!!x y. x >= y ==> f x >= f y) ==> f a >= c" haftmann@21083: by (subgoal_tac "f a >= f b", force, force) haftmann@21083: haftmann@21083: lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> haftmann@21083: (!!x y. x >= y ==> f x >= f y) ==> a > f c" haftmann@21083: by (subgoal_tac "f b >= f c", force, force) haftmann@21083: haftmann@21083: lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> f a > c" haftmann@21083: by (subgoal_tac "f a > f b", force, force) haftmann@21083: haftmann@21083: lemma xt6: "(a::'a::order) >= f b ==> b > c ==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> a > f c" haftmann@21083: by (subgoal_tac "f b > f c", force, force) haftmann@21083: haftmann@21083: lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> haftmann@21083: (!!x y. x >= y ==> f x >= f y) ==> f a > c" haftmann@21083: by (subgoal_tac "f a >= f b", force, force) haftmann@21083: haftmann@21083: lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> a > f c" haftmann@21083: by (subgoal_tac "f b > f c", force, force) haftmann@21083: haftmann@21083: lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> f a > c" haftmann@21083: by (subgoal_tac "f a > f b", force, force) haftmann@21083: haftmann@21083: lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 haftmann@21083: haftmann@21083: (* haftmann@21083: Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands haftmann@21083: for the wrong thing in an Isar proof. haftmann@21083: haftmann@21083: The extra transitivity rules can be used as follows: haftmann@21083: haftmann@21083: lemma "(a::'a::order) > z" haftmann@21083: proof - haftmann@21083: have "a >= b" (is "_ >= ?rhs") haftmann@21083: sorry haftmann@21083: also have "?rhs >= c" (is "_ >= ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs = d" (is "_ = ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs > f" (is "_ > ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs > z" haftmann@21083: sorry haftmann@21083: finally (xtrans) show ?thesis . haftmann@21083: qed haftmann@21083: haftmann@21083: Alternatively, one can use "declare xtrans [trans]" and then haftmann@21083: leave out the "(xtrans)" above. haftmann@21083: *) haftmann@21083: haftmann@21546: subsection {* Order on bool *} haftmann@21546: haftmann@21546: instance bool :: linorder haftmann@21546: le_bool_def: "P \ Q \ P \ Q" haftmann@21546: less_bool_def: "P < Q \ P \ Q \ P \ Q" haftmann@21546: by default (auto simp add: le_bool_def less_bool_def) haftmann@21546: haftmann@21546: lemma le_boolI: "(P \ Q) \ P \ Q" haftmann@21546: by (simp add: le_bool_def) haftmann@21546: haftmann@21546: lemma le_boolI': "P \ Q \ P \ Q" haftmann@21546: by (simp add: le_bool_def) haftmann@21546: haftmann@21546: lemma le_boolE: "P \ Q \ P \ (Q \ R) \ R" haftmann@21546: by (simp add: le_bool_def) haftmann@21546: haftmann@21546: lemma le_boolD: "P \ Q \ P \ Q" haftmann@21546: by (simp add: le_bool_def) haftmann@21546: haftmann@21383: subsection {* Monotonicity, syntactic least value operator and min/max *} haftmann@21083: haftmann@21216: locale mono = haftmann@21216: fixes f haftmann@21216: assumes mono: "A \ B \ f A \ f B" haftmann@21216: haftmann@21216: lemmas monoI [intro?] = mono.intro haftmann@21216: and monoD [dest?] = mono.mono haftmann@21083: haftmann@21083: constdefs haftmann@21083: Least :: "('a::ord => bool) => 'a" (binder "LEAST " 10) haftmann@21083: "Least P == THE x. P x & (ALL y. P y --> x <= y)" haftmann@21083: -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *} haftmann@21083: haftmann@21383: lemma LeastI2_order: haftmann@21383: "[| P (x::'a::order); haftmann@21383: !!y. P y ==> x <= y; haftmann@21383: !!x. [| P x; ALL y. P y --> x \ y |] ==> Q x |] haftmann@21383: ==> Q (Least P)" haftmann@21383: apply (unfold Least_def) haftmann@21383: apply (rule theI2) haftmann@21383: apply (blast intro: order_antisym)+ haftmann@21383: done haftmann@21383: haftmann@21383: lemma Least_equality: haftmann@21383: "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" haftmann@21383: apply (simp add: Least_def) haftmann@21383: apply (rule the_equality) haftmann@21383: apply (auto intro!: order_antisym) haftmann@21383: done haftmann@21383: haftmann@21083: constdefs haftmann@21083: min :: "['a::ord, 'a] => 'a" haftmann@21083: "min a b == (if a <= b then a else b)" haftmann@21083: max :: "['a::ord, 'a] => 'a" haftmann@21083: "max a b == (if a <= b then b else a)" haftmann@21083: haftmann@21383: lemma min_linorder: haftmann@21383: "linorder.min (op \ \ 'a\linorder \ 'a \ bool) = min" haftmann@22316: by rule+ (simp add: min_def linorder_class.min_def) haftmann@21383: haftmann@21383: lemma max_linorder: haftmann@21383: "linorder.max (op \ \ 'a\linorder \ 'a \ bool) = max" haftmann@22316: by rule+ (simp add: max_def linorder_class.max_def) haftmann@21383: haftmann@22316: lemmas min_le_iff_disj = linorder_class.min_le_iff_disj [unfolded min_linorder] haftmann@22316: lemmas le_max_iff_disj = linorder_class.le_max_iff_disj [unfolded max_linorder] haftmann@22316: lemmas min_less_iff_disj = linorder_class.min_less_iff_disj [unfolded min_linorder] haftmann@22316: lemmas less_max_iff_disj = linorder_class.less_max_iff_disj [unfolded max_linorder] haftmann@22316: lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj [unfolded min_linorder] haftmann@22316: lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj [unfolded max_linorder] haftmann@22316: lemmas split_min = linorder_class.split_min [unfolded min_linorder] haftmann@22316: lemmas split_max = linorder_class.split_max [unfolded max_linorder] haftmann@21383: haftmann@21383: lemma min_leastL: "(!!x. least <= x) ==> min least x = least" haftmann@21383: by (simp add: min_def) haftmann@21383: haftmann@21383: lemma max_leastL: "(!!x. least <= x) ==> max least x = x" haftmann@21383: by (simp add: max_def) haftmann@21383: haftmann@21383: lemma min_leastR: "(\x\'a\order. least \ x) \ min x least = least" haftmann@21383: apply (simp add: min_def) haftmann@21383: apply (blast intro: order_antisym) haftmann@21383: done haftmann@21383: haftmann@21383: lemma max_leastR: "(\x\'a\order. least \ x) \ max x least = x" haftmann@21383: apply (simp add: max_def) haftmann@21383: apply (blast intro: order_antisym) haftmann@21383: done haftmann@21383: haftmann@21383: lemma min_of_mono: haftmann@21383: "(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)" haftmann@21383: by (simp add: min_def) haftmann@21383: haftmann@21383: lemma max_of_mono: haftmann@21383: "(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)" haftmann@21383: by (simp add: max_def) haftmann@21383: wenzelm@21673: wenzelm@21673: subsection {* Basic ML bindings *} wenzelm@21673: wenzelm@21673: ML {* wenzelm@21673: val leD = thm "leD"; wenzelm@21673: val leI = thm "leI"; wenzelm@21673: val linorder_neqE = thm "linorder_neqE"; wenzelm@21673: val linorder_neq_iff = thm "linorder_neq_iff"; wenzelm@21673: val linorder_not_le = thm "linorder_not_le"; wenzelm@21673: val linorder_not_less = thm "linorder_not_less"; wenzelm@21673: val monoD = thm "monoD"; wenzelm@21673: val monoI = thm "monoI"; wenzelm@21673: val order_antisym = thm "order_antisym"; wenzelm@21673: val order_less_irrefl = thm "order_less_irrefl"; wenzelm@21673: val order_refl = thm "order_refl"; wenzelm@21673: val order_trans = thm "order_trans"; wenzelm@21673: val split_max = thm "split_max"; wenzelm@21673: val split_min = thm "split_min"; wenzelm@21673: *} wenzelm@21673: wenzelm@21673: ML {* wenzelm@21673: structure HOL = wenzelm@21673: struct wenzelm@21673: val thy = theory "HOL"; wenzelm@21673: end; wenzelm@21673: *} -- "belongs to theory HOL" wenzelm@21673: nipkow@15524: end