wenzelm@11024: (* Title: HOL/ex/Primrec.thy paulson@3335: ID: $Id$ paulson@3335: Author: Lawrence C Paulson, Cambridge University Computer Laboratory paulson@3335: Copyright 1997 University of Cambridge paulson@3335: wenzelm@11024: Primitive Recursive Functions. Demonstrates recursive definitions, wenzelm@11024: the TFL package. paulson@3335: *) paulson@3335: wenzelm@11024: header {* Primitive Recursive Functions *} wenzelm@11024: haftmann@16417: theory Primrec imports Main begin wenzelm@11024: wenzelm@11024: text {* wenzelm@11024: Proof adopted from wenzelm@11024: wenzelm@11024: Nora Szasz, A Machine Checked Proof that Ackermann's Function is not wenzelm@11024: Primitive Recursive, In: Huet \& Plotkin, eds., Logical Environments wenzelm@11024: (CUP, 1993), 317-338. wenzelm@11024: wenzelm@11024: See also E. Mendelson, Introduction to Mathematical Logic. (Van wenzelm@11024: Nostrand, 1964), page 250, exercise 11. wenzelm@11024: \medskip wenzelm@11024: *} wenzelm@11024: wenzelm@11024: consts ack :: "nat * nat => nat" wenzelm@11024: recdef ack "less_than <*lex*> less_than" wenzelm@11024: "ack (0, n) = Suc n" wenzelm@11024: "ack (Suc m, 0) = ack (m, 1)" wenzelm@11024: "ack (Suc m, Suc n) = ack (m, ack (Suc m, n))" wenzelm@11024: wenzelm@11024: consts list_add :: "nat list => nat" wenzelm@11024: primrec wenzelm@11024: "list_add [] = 0" wenzelm@11024: "list_add (m # ms) = m + list_add ms" wenzelm@11024: wenzelm@11024: consts zeroHd :: "nat list => nat" wenzelm@11024: primrec wenzelm@11024: "zeroHd [] = 0" wenzelm@11024: "zeroHd (m # ms) = m" wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* The set of primitive recursive functions of type @{typ "nat list => nat"}. *} wenzelm@11024: wenzelm@19736: definition wenzelm@21404: SC :: "nat list => nat" where wenzelm@19736: "SC l = Suc (zeroHd l)" paulson@3335: wenzelm@21404: definition wenzelm@21404: CONSTANT :: "nat => nat list => nat" where wenzelm@19736: "CONSTANT k l = k" wenzelm@11024: wenzelm@21404: definition wenzelm@21404: PROJ :: "nat => nat list => nat" where wenzelm@19736: "PROJ i l = zeroHd (drop i l)" wenzelm@11024: wenzelm@21404: definition wenzelm@21404: COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat" where wenzelm@19736: "COMP g fs l = g (map (\f. f l) fs)" wenzelm@11024: wenzelm@21404: definition wenzelm@21404: PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat" where wenzelm@19736: "PREC f g l = wenzelm@19736: (case l of wenzelm@11024: [] => 0 wenzelm@19736: | x # l' => nat_rec (f l') (\y r. g (r # y # l')) x)" wenzelm@11024: -- {* Note that @{term g} is applied first to @{term "PREC f g y"} and then to @{term y}! *} wenzelm@11024: berghofe@23776: inductive PRIMREC :: "(nat list => nat) => bool" berghofe@22283: where berghofe@22283: SC: "PRIMREC SC" berghofe@22283: | CONSTANT: "PRIMREC (CONSTANT k)" berghofe@22283: | PROJ: "PRIMREC (PROJ i)" nipkow@22944: | COMP: "PRIMREC g ==> \f \ set fs. PRIMREC f ==> PRIMREC (COMP g fs)" berghofe@22283: | PREC: "PRIMREC f ==> PRIMREC g ==> PRIMREC (PREC f g)" wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* Useful special cases of evaluation *} wenzelm@11024: wenzelm@11024: lemma SC [simp]: "SC (x # l) = Suc x" wenzelm@11024: apply (simp add: SC_def) wenzelm@11024: done wenzelm@11024: wenzelm@19676: lemma CONSTANT [simp]: "CONSTANT k l = k" wenzelm@19676: apply (simp add: CONSTANT_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x" wenzelm@11024: apply (simp add: PROJ_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma COMP_1 [simp]: "COMP g [f] l = g [f l]" wenzelm@11024: apply (simp add: COMP_def) wenzelm@11024: done paulson@3335: wenzelm@11024: lemma PREC_0 [simp]: "PREC f g (0 # l) = f l" wenzelm@11024: apply (simp add: PREC_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)" wenzelm@11024: apply (simp add: PREC_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 4 *} wenzelm@11024: wenzelm@11024: lemma less_ack2 [iff]: "j < ack (i, j)" wenzelm@11024: apply (induct i j rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 5-, the single-step lemma *} wenzelm@11024: wenzelm@11024: lemma ack_less_ack_Suc2 [iff]: "ack(i, j) < ack (i, Suc j)" wenzelm@11024: apply (induct i j rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 5, monotonicity for @{text "<"} *} wenzelm@11024: wenzelm@11024: lemma ack_less_mono2: "j < k ==> ack (i, j) < ack (i, k)" wenzelm@11024: apply (induct i k rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast elim!: less_SucE intro: less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 5', monotonicity for @{text \} *} wenzelm@11024: wenzelm@11024: lemma ack_le_mono2: "j \ k ==> ack (i, j) \ ack (i, k)" wenzelm@11024: apply (simp add: order_le_less) wenzelm@11024: apply (blast intro: ack_less_mono2) wenzelm@11024: done paulson@3335: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 6 *} wenzelm@11024: wenzelm@11024: lemma ack2_le_ack1 [iff]: "ack (i, Suc j) \ ack (Suc i, j)" haftmann@26072: proof (induct j) haftmann@26072: case 0 show ?case by simp haftmann@26072: next haftmann@26072: case (Suc j) show ?case haftmann@26072: by (auto intro!: ack_le_mono2) haftmann@26072: (metis Suc Suc_leI Suc_lessI less_ack2 linorder_not_less) haftmann@26072: qed wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 7-, the single-step lemma *} wenzelm@11024: wenzelm@11024: lemma ack_less_ack_Suc1 [iff]: "ack (i, j) < ack (Suc i, j)" wenzelm@11024: apply (blast intro: ack_less_mono2 less_le_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@19676: text {* PROPERTY A 4'? Extra lemma needed for @{term CONSTANT} case, constant functions *} wenzelm@11024: wenzelm@11024: lemma less_ack1 [iff]: "i < ack (i, j)" wenzelm@11024: apply (induct i) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: Suc_leI le_less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 8 *} wenzelm@11024: wenzelm@11704: lemma ack_1 [simp]: "ack (Suc 0, j) = j + 2" wenzelm@11024: apply (induct j) wenzelm@11024: apply simp_all wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11701: text {* PROPERTY A 9. The unary @{text 1} and @{text 2} in @{term wenzelm@11024: ack} is essential for the rewriting. *} wenzelm@11024: wenzelm@11704: lemma ack_2 [simp]: "ack (Suc (Suc 0), j) = 2 * j + 3" wenzelm@11024: apply (induct j) wenzelm@11024: apply simp_all wenzelm@11024: done paulson@3335: paulson@3335: wenzelm@11024: text {* PROPERTY A 7, monotonicity for @{text "<"} [not clear why wenzelm@11024: @{thm [source] ack_1} is now needed first!] *} wenzelm@11024: wenzelm@11024: lemma ack_less_mono1_aux: "ack (i, k) < ack (Suc (i +i'), k)" wenzelm@11024: apply (induct i k rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: prefer 2 wenzelm@11024: apply (blast intro: less_trans ack_less_mono2) wenzelm@11024: apply (induct_tac i' n rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: Suc_leI [THEN le_less_trans] ack_less_mono2) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma ack_less_mono1: "i < j ==> ack (i, k) < ack (j, k)" wenzelm@11024: apply (drule less_imp_Suc_add) wenzelm@11024: apply (blast intro!: ack_less_mono1_aux) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 7', monotonicity for @{text "\"} *} wenzelm@11024: wenzelm@11024: lemma ack_le_mono1: "i \ j ==> ack (i, k) \ ack (j, k)" wenzelm@11024: apply (simp add: order_le_less) wenzelm@11024: apply (blast intro: ack_less_mono1) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 10 *} wenzelm@11024: wenzelm@11704: lemma ack_nest_bound: "ack(i1, ack (i2, j)) < ack (2 + (i1 + i2), j)" wenzelm@11024: apply (simp add: numerals) wenzelm@11024: apply (rule ack2_le_ack1 [THEN [2] less_le_trans]) wenzelm@11024: apply simp wenzelm@11024: apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans]) wenzelm@11024: apply (rule ack_less_mono1 [THEN ack_less_mono2]) wenzelm@11024: apply (simp add: le_imp_less_Suc le_add2) wenzelm@11024: done wenzelm@11024: paulson@3335: wenzelm@11024: text {* PROPERTY A 11 *} paulson@3335: wenzelm@11704: lemma ack_add_bound: "ack (i1, j) + ack (i2, j) < ack (4 + (i1 + i2), j)" paulson@24742: apply (rule less_trans [of _ "ack (Suc (Suc 0), ack (i1 + i2, j))" _]) wenzelm@11024: prefer 2 wenzelm@11024: apply (rule ack_nest_bound [THEN less_le_trans]) wenzelm@11024: apply (simp add: Suc3_eq_add_3) wenzelm@11024: apply simp wenzelm@11024: apply (cut_tac i = i1 and m1 = i2 and k = j in le_add1 [THEN ack_le_mono1]) wenzelm@11024: apply (cut_tac i = "i2" and m1 = i1 and k = j in le_add2 [THEN ack_le_mono1]) wenzelm@11024: apply auto wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 12. Article uses existential quantifier but the ALF proof wenzelm@11024: used @{text "k + 4"}. Quantified version must be nested @{text wenzelm@11024: "\k'. \i j. ..."} *} paulson@3335: wenzelm@11704: lemma ack_add_bound2: "i < ack (k, j) ==> i + j < ack (4 + k, j)" paulson@24742: apply (rule less_trans [of _ "ack (k, j) + ack (0, j)" _]) paulson@24742: apply (blast intro: add_less_mono less_ack2) wenzelm@11024: apply (rule ack_add_bound [THEN less_le_trans]) wenzelm@11024: apply simp wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* Inductive definition of the @{term PR} functions *} paulson@3335: wenzelm@11024: text {* MAIN RESULT *} wenzelm@11024: wenzelm@11024: lemma SC_case: "SC l < ack (1, list_add l)" wenzelm@11024: apply (unfold SC_def) wenzelm@11024: apply (induct l) wenzelm@11024: apply (simp_all add: le_add1 le_imp_less_Suc) wenzelm@11024: done wenzelm@11024: wenzelm@19676: lemma CONSTANT_case: "CONSTANT k l < ack (k, list_add l)" paulson@24551: by simp paulson@3335: wenzelm@11024: lemma PROJ_case [rule_format]: "\i. PROJ i l < ack (0, list_add l)" wenzelm@11024: apply (simp add: PROJ_def) wenzelm@11024: apply (induct l) paulson@24551: apply (auto simp add: drop_Cons split: nat.split) paulson@24551: apply (blast intro: less_le_trans le_add2) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* @{term COMP} case *} paulson@3335: nipkow@22944: lemma COMP_map_aux: "\f \ set fs. PRIMREC f \ (\kf. \l. f l < ack (kf, list_add l)) wenzelm@11024: ==> \k. \l. list_add (map (\f. f l) fs) < ack (k, list_add l)" nipkow@22944: apply (induct fs) paulson@24551: apply (rule_tac x = 0 in exI) wenzelm@11024: apply simp wenzelm@11024: apply simp wenzelm@11024: apply (blast intro: add_less_mono ack_add_bound less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma COMP_case: wenzelm@11024: "\l. g l < ack (kg, list_add l) ==> nipkow@22944: \f \ set fs. PRIMREC f \ (\kf. \l. f l < ack(kf, list_add l)) wenzelm@11024: ==> \k. \l. COMP g fs l < ack(k, list_add l)" wenzelm@11024: apply (unfold COMP_def) paulson@16588: --{*Now, if meson tolerated map, we could finish with wenzelm@16731: @{text "(drule COMP_map_aux, meson ack_less_mono2 ack_nest_bound less_trans)"} *} paulson@16588: apply (erule COMP_map_aux [THEN exE]) paulson@16588: apply (rule exI) paulson@16588: apply (rule allI) paulson@16588: apply (drule spec)+ paulson@16588: apply (erule less_trans) paulson@16588: apply (blast intro: ack_less_mono2 ack_nest_bound less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* @{term PREC} case *} paulson@3335: wenzelm@11024: lemma PREC_case_aux: wenzelm@11024: "\l. f l + list_add l < ack (kf, list_add l) ==> wenzelm@11024: \l. g l + list_add l < ack (kg, list_add l) ==> wenzelm@11024: PREC f g l + list_add l < ack (Suc (kf + kg), list_add l)" wenzelm@11024: apply (unfold PREC_def) wenzelm@11024: apply (case_tac l) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: less_trans) wenzelm@11024: apply (erule ssubst) -- {* get rid of the needless assumption *} wenzelm@11024: apply (induct_tac a) wenzelm@11024: apply simp_all wenzelm@11024: txt {* base case *} wenzelm@11024: apply (blast intro: le_add1 [THEN le_imp_less_Suc, THEN ack_less_mono1] less_trans) wenzelm@11024: txt {* induction step *} wenzelm@11024: apply (rule Suc_leI [THEN le_less_trans]) wenzelm@11024: apply (rule le_refl [THEN add_le_mono, THEN le_less_trans]) wenzelm@11024: prefer 2 wenzelm@11024: apply (erule spec) wenzelm@11024: apply (simp add: le_add2) wenzelm@11024: txt {* final part of the simplification *} wenzelm@11024: apply simp wenzelm@11024: apply (rule le_add2 [THEN ack_le_mono1, THEN le_less_trans]) wenzelm@11024: apply (erule ack_less_mono2) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma PREC_case: wenzelm@11024: "\l. f l < ack (kf, list_add l) ==> wenzelm@11024: \l. g l < ack (kg, list_add l) ==> wenzelm@11024: \k. \l. PREC f g l < ack (k, list_add l)" paulson@24551: by (metis le_less_trans [OF le_add1 PREC_case_aux] ack_add_bound2) wenzelm@11024: berghofe@22283: lemma ack_bounds_PRIMREC: "PRIMREC f ==> \k. \l. f l < ack (k, list_add l)" wenzelm@11024: apply (erule PRIMREC.induct) wenzelm@19676: apply (blast intro: SC_case CONSTANT_case PROJ_case COMP_case PREC_case)+ wenzelm@11024: done wenzelm@11024: berghofe@22283: lemma ack_not_PRIMREC: "\ PRIMREC (\l. case l of [] => 0 | x # l' => ack (x, x))" wenzelm@11024: apply (rule notI) wenzelm@11024: apply (erule ack_bounds_PRIMREC [THEN exE]) paulson@24742: apply (rule Nat.less_irrefl) wenzelm@11024: apply (drule_tac x = "[x]" in spec) wenzelm@11024: apply simp wenzelm@11024: done paulson@3335: paulson@3335: end