wenzelm@35788: (* Title: HOL/Library/Quotient_List.thy kaliszyk@35222: Author: Cezary Kaliszyk and Christian Urban kaliszyk@35222: *) wenzelm@35788: wenzelm@35788: header {* Quotient infrastructure for the list type *} wenzelm@35788: kaliszyk@35222: theory Quotient_List kaliszyk@35222: imports Main Quotient_Syntax kaliszyk@35222: begin kaliszyk@35222: kaliszyk@37492: declare [[map list = (map, list_all2)]] kaliszyk@35222: haftmann@40820: lemma map_id [id_simps]: haftmann@40820: "map id = id" haftmann@40820: by (simp add: id_def fun_eq_iff map.identity) kaliszyk@35222: haftmann@40820: lemma list_all2_map1: haftmann@40820: "list_all2 R (map f xs) ys \ list_all2 (\x. R (f x)) xs ys" haftmann@40820: by (induct xs ys rule: list_induct2') simp_all haftmann@40820: haftmann@40820: lemma list_all2_map2: haftmann@40820: "list_all2 R xs (map f ys) \ list_all2 (\x y. R x (f y)) xs ys" haftmann@40820: by (induct xs ys rule: list_induct2') simp_all kaliszyk@35222: haftmann@40820: lemma list_all2_eq [id_simps]: haftmann@40820: "list_all2 (op =) = (op =)" haftmann@40820: proof (rule ext)+ haftmann@40820: fix xs ys haftmann@40820: show "list_all2 (op =) xs ys \ xs = ys" haftmann@40820: by (induct xs ys rule: list_induct2') simp_all haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma list_reflp: haftmann@40820: assumes "reflp R" haftmann@40820: shows "reflp (list_all2 R)" haftmann@40820: proof (rule reflpI) haftmann@40820: from assms have *: "\xs. R xs xs" by (rule reflpE) haftmann@40820: fix xs haftmann@40820: show "list_all2 R xs xs" haftmann@40820: by (induct xs) (simp_all add: *) haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma list_symp: haftmann@40820: assumes "symp R" haftmann@40820: shows "symp (list_all2 R)" haftmann@40820: proof (rule sympI) haftmann@40820: from assms have *: "\xs ys. R xs ys \ R ys xs" by (rule sympE) haftmann@40820: fix xs ys haftmann@40820: assume "list_all2 R xs ys" haftmann@40820: then show "list_all2 R ys xs" haftmann@40820: by (induct xs ys rule: list_induct2') (simp_all add: *) haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma list_transp: haftmann@40820: assumes "transp R" haftmann@40820: shows "transp (list_all2 R)" haftmann@40820: proof (rule transpI) haftmann@40820: from assms have *: "\xs ys zs. R xs ys \ R ys zs \ R xs zs" by (rule transpE) haftmann@40820: fix xs ys zs haftmann@40820: assume A: "list_all2 R xs ys" "list_all2 R ys zs" haftmann@40820: then have "length xs = length ys" "length ys = length zs" by (blast dest: list_all2_lengthD)+ haftmann@40820: then show "list_all2 R xs zs" using A haftmann@40820: by (induct xs ys zs rule: list_induct3) (auto intro: *) haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma list_equivp [quot_equiv]: haftmann@40820: "equivp R \ equivp (list_all2 R)" haftmann@40820: by (blast intro: equivpI list_reflp list_symp list_transp elim: equivpE) kaliszyk@35222: haftmann@40820: lemma list_quotient [quot_thm]: haftmann@40820: assumes "Quotient R Abs Rep" kaliszyk@37492: shows "Quotient (list_all2 R) (map Abs) (map Rep)" haftmann@40820: proof (rule QuotientI) haftmann@40820: from assms have "\x. Abs (Rep x) = x" by (rule Quotient_abs_rep) haftmann@40820: then show "\xs. map Abs (map Rep xs) = xs" by (simp add: comp_def) haftmann@40820: next haftmann@40820: from assms have "\x y. R (Rep x) (Rep y) \ x = y" by (rule Quotient_rel_rep) haftmann@40820: then show "\xs. list_all2 R (map Rep xs) (map Rep xs)" haftmann@40820: by (simp add: list_all2_map1 list_all2_map2 list_all2_eq) haftmann@40820: next haftmann@40820: fix xs ys haftmann@40820: from assms have "\x y. R x x \ R y y \ Abs x = Abs y \ R x y" by (rule Quotient_rel) haftmann@40820: then show "list_all2 R xs ys \ list_all2 R xs xs \ list_all2 R ys ys \ map Abs xs = map Abs ys" haftmann@40820: by (induct xs ys rule: list_induct2') auto haftmann@40820: qed kaliszyk@35222: haftmann@40820: lemma cons_prs [quot_preserve]: kaliszyk@35222: assumes q: "Quotient R Abs Rep" kaliszyk@35222: shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" haftmann@40463: by (auto simp add: fun_eq_iff comp_def Quotient_abs_rep [OF q]) kaliszyk@35222: haftmann@40820: lemma cons_rsp [quot_respect]: kaliszyk@35222: assumes q: "Quotient R Abs Rep" kaliszyk@37492: shows "(R ===> list_all2 R ===> list_all2 R) (op #) (op #)" haftmann@40463: by auto kaliszyk@35222: haftmann@40820: lemma nil_prs [quot_preserve]: kaliszyk@35222: assumes q: "Quotient R Abs Rep" kaliszyk@35222: shows "map Abs [] = []" kaliszyk@35222: by simp kaliszyk@35222: haftmann@40820: lemma nil_rsp [quot_respect]: kaliszyk@35222: assumes q: "Quotient R Abs Rep" kaliszyk@37492: shows "list_all2 R [] []" kaliszyk@35222: by simp kaliszyk@35222: kaliszyk@35222: lemma map_prs_aux: kaliszyk@35222: assumes a: "Quotient R1 abs1 rep1" kaliszyk@35222: and b: "Quotient R2 abs2 rep2" kaliszyk@35222: shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" kaliszyk@35222: by (induct l) kaliszyk@35222: (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) kaliszyk@35222: haftmann@40820: lemma map_prs [quot_preserve]: kaliszyk@35222: assumes a: "Quotient R1 abs1 rep1" kaliszyk@35222: and b: "Quotient R2 abs2 rep2" kaliszyk@35222: shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" kaliszyk@36216: and "((abs1 ---> id) ---> map rep1 ---> id) map = map" haftmann@40463: by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def) haftmann@40463: (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) haftmann@40463: haftmann@40820: lemma map_rsp [quot_respect]: kaliszyk@35222: assumes q1: "Quotient R1 Abs1 Rep1" kaliszyk@35222: and q2: "Quotient R2 Abs2 Rep2" kaliszyk@37492: shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map" kaliszyk@37492: and "((R1 ===> op =) ===> (list_all2 R1) ===> op =) map map" haftmann@40463: apply (simp_all add: fun_rel_def) kaliszyk@36216: apply(rule_tac [!] allI)+ kaliszyk@36216: apply(rule_tac [!] impI) kaliszyk@36216: apply(rule_tac [!] allI)+ kaliszyk@36216: apply (induct_tac [!] xa ya rule: list_induct2') kaliszyk@35222: apply simp_all kaliszyk@35222: done kaliszyk@35222: kaliszyk@35222: lemma foldr_prs_aux: kaliszyk@35222: assumes a: "Quotient R1 abs1 rep1" kaliszyk@35222: and b: "Quotient R2 abs2 rep2" kaliszyk@35222: shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" kaliszyk@35222: by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) kaliszyk@35222: haftmann@40820: lemma foldr_prs [quot_preserve]: kaliszyk@35222: assumes a: "Quotient R1 abs1 rep1" kaliszyk@35222: and b: "Quotient R2 abs2 rep2" kaliszyk@35222: shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" haftmann@40463: apply (simp add: fun_eq_iff) haftmann@40463: by (simp only: fun_eq_iff foldr_prs_aux[OF a b]) kaliszyk@35222: (simp) kaliszyk@35222: kaliszyk@35222: lemma foldl_prs_aux: kaliszyk@35222: assumes a: "Quotient R1 abs1 rep1" kaliszyk@35222: and b: "Quotient R2 abs2 rep2" kaliszyk@35222: shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" kaliszyk@35222: by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) kaliszyk@35222: haftmann@40820: lemma foldl_prs [quot_preserve]: kaliszyk@35222: assumes a: "Quotient R1 abs1 rep1" kaliszyk@35222: and b: "Quotient R2 abs2 rep2" kaliszyk@35222: shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" haftmann@40463: by (simp add: fun_eq_iff foldl_prs_aux [OF a b]) kaliszyk@35222: kaliszyk@37492: lemma list_all2_empty: kaliszyk@37492: shows "list_all2 R [] b \ length b = 0" kaliszyk@35222: by (induct b) (simp_all) kaliszyk@35222: kaliszyk@35222: (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) kaliszyk@35222: lemma foldl_rsp[quot_respect]: kaliszyk@35222: assumes q1: "Quotient R1 Abs1 Rep1" kaliszyk@35222: and q2: "Quotient R2 Abs2 Rep2" kaliszyk@37492: shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_all2 R2 ===> R1) foldl foldl" haftmann@40463: apply(auto simp add: fun_rel_def) kaliszyk@37492: apply (subgoal_tac "R1 xa ya \ list_all2 R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") kaliszyk@35222: apply simp kaliszyk@35222: apply (rule_tac x="xa" in spec) kaliszyk@35222: apply (rule_tac x="ya" in spec) kaliszyk@35222: apply (rule_tac xs="xb" and ys="yb" in list_induct2) kaliszyk@37492: apply (rule list_all2_lengthD) kaliszyk@35222: apply (simp_all) kaliszyk@35222: done kaliszyk@35222: kaliszyk@35222: lemma foldr_rsp[quot_respect]: kaliszyk@35222: assumes q1: "Quotient R1 Abs1 Rep1" kaliszyk@35222: and q2: "Quotient R2 Abs2 Rep2" kaliszyk@37492: shows "((R1 ===> R2 ===> R2) ===> list_all2 R1 ===> R2 ===> R2) foldr foldr" haftmann@40463: apply (auto simp add: fun_rel_def) kaliszyk@37492: apply(subgoal_tac "R2 xb yb \ list_all2 R1 xa ya \ R2 (foldr x xa xb) (foldr y ya yb)") kaliszyk@35222: apply simp kaliszyk@35222: apply (rule_tac xs="xa" and ys="ya" in list_induct2) kaliszyk@37492: apply (rule list_all2_lengthD) kaliszyk@35222: apply (simp_all) kaliszyk@35222: done kaliszyk@35222: kaliszyk@37492: lemma list_all2_rsp: kaliszyk@36154: assumes r: "\x y. R x y \ (\a b. R a b \ S x a = T y b)" kaliszyk@37492: and l1: "list_all2 R x y" kaliszyk@37492: and l2: "list_all2 R a b" kaliszyk@37492: shows "list_all2 S x a = list_all2 T y b" kaliszyk@36154: proof - kaliszyk@37492: have a: "length y = length x" by (rule list_all2_lengthD[OF l1, symmetric]) kaliszyk@37492: have c: "length a = length b" by (rule list_all2_lengthD[OF l2]) kaliszyk@36154: show ?thesis proof (cases "length x = length a") kaliszyk@36154: case True kaliszyk@36154: have b: "length x = length a" by fact kaliszyk@36154: show ?thesis using a b c r l1 l2 proof (induct rule: list_induct4) kaliszyk@36154: case Nil kaliszyk@36154: show ?case using assms by simp kaliszyk@36154: next kaliszyk@36154: case (Cons h t) kaliszyk@36154: then show ?case by auto kaliszyk@36154: qed kaliszyk@36154: next kaliszyk@36154: case False kaliszyk@36154: have d: "length x \ length a" by fact kaliszyk@37492: then have e: "\list_all2 S x a" using list_all2_lengthD by auto kaliszyk@36154: have "length y \ length b" using d a c by simp kaliszyk@37492: then have "\list_all2 T y b" using list_all2_lengthD by auto kaliszyk@36154: then show ?thesis using e by simp kaliszyk@36154: qed kaliszyk@36154: qed kaliszyk@36154: haftmann@40820: lemma [quot_respect]: kaliszyk@37492: "((R ===> R ===> op =) ===> list_all2 R ===> list_all2 R ===> op =) list_all2 list_all2" haftmann@40463: by (simp add: list_all2_rsp fun_rel_def) kaliszyk@36154: haftmann@40820: lemma [quot_preserve]: kaliszyk@36154: assumes a: "Quotient R abs1 rep1" kaliszyk@37492: shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2" nipkow@39302: apply (simp add: fun_eq_iff) kaliszyk@36154: apply clarify kaliszyk@36154: apply (induct_tac xa xb rule: list_induct2') kaliszyk@36154: apply (simp_all add: Quotient_abs_rep[OF a]) kaliszyk@36154: done kaliszyk@36154: haftmann@40820: lemma [quot_preserve]: kaliszyk@36154: assumes a: "Quotient R abs1 rep1" kaliszyk@37492: shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" kaliszyk@36154: by (induct l m rule: list_induct2') (simp_all add: Quotient_rel_rep[OF a]) kaliszyk@36154: kaliszyk@37492: lemma list_all2_find_element: kaliszyk@36276: assumes a: "x \ set a" kaliszyk@37492: and b: "list_all2 R a b" kaliszyk@36276: shows "\y. (y \ set b \ R x y)" kaliszyk@36276: proof - kaliszyk@37492: have "length a = length b" using b by (rule list_all2_lengthD) kaliszyk@36276: then show ?thesis using a b by (induct a b rule: list_induct2) auto kaliszyk@36276: qed kaliszyk@36276: kaliszyk@37492: lemma list_all2_refl: kaliszyk@35222: assumes a: "\x y. R x y = (R x = R y)" kaliszyk@37492: shows "list_all2 R x x" kaliszyk@35222: by (induct x) (auto simp add: a) kaliszyk@35222: kaliszyk@35222: end