wenzelm@41959: (* Title: HOL/Int.thy haftmann@25919: Author: Lawrence C Paulson, Cambridge University Computer Laboratory wenzelm@41959: Author: Tobias Nipkow, Florian Haftmann, TU Muenchen haftmann@25919: *) haftmann@25919: haftmann@25919: header {* The Integers as Equivalence Classes over Pairs of Natural Numbers *} haftmann@25919: haftmann@25919: theory Int huffman@48045: imports Equiv_Relations Wellfounded Quotient haftmann@25919: begin haftmann@25919: huffman@48045: subsection {* Definition of integers as a quotient type *} haftmann@25919: huffman@48045: definition intrel :: "(nat \ nat) \ (nat \ nat) \ bool" where huffman@48045: "intrel = (\(x, y) (u, v). x + v = u + y)" huffman@48045: huffman@48045: lemma intrel_iff [simp]: "intrel (x, y) (u, v) \ x + v = u + y" huffman@48045: by (simp add: intrel_def) haftmann@25919: huffman@48045: quotient_type int = "nat \ nat" / "intrel" wenzelm@45694: morphisms Rep_Integ Abs_Integ huffman@48045: proof (rule equivpI) huffman@48045: show "reflp intrel" huffman@48045: unfolding reflp_def by auto huffman@48045: show "symp intrel" huffman@48045: unfolding symp_def by auto huffman@48045: show "transp intrel" huffman@48045: unfolding transp_def by auto huffman@48045: qed haftmann@25919: huffman@48045: lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]: huffman@48045: "(!!x y. z = Abs_Integ (x, y) ==> P) ==> P" huffman@48045: by (induct z) auto huffman@48045: huffman@48045: subsection {* Integers form a commutative ring *} huffman@48045: huffman@48045: instantiation int :: comm_ring_1 haftmann@25919: begin haftmann@25919: huffman@48045: lift_definition zero_int :: "int" is "(0, 0)" huffman@48045: by simp haftmann@25919: huffman@48045: lift_definition one_int :: "int" is "(1, 0)" huffman@48045: by simp haftmann@25919: huffman@48045: lift_definition plus_int :: "int \ int \ int" huffman@48045: is "\(x, y) (u, v). (x + u, y + v)" huffman@48045: by clarsimp haftmann@25919: huffman@48045: lift_definition uminus_int :: "int \ int" huffman@48045: is "\(x, y). (y, x)" huffman@48045: by clarsimp haftmann@25919: huffman@48045: lift_definition minus_int :: "int \ int \ int" huffman@48045: is "\(x, y) (u, v). (x + v, y + u)" huffman@48045: by clarsimp haftmann@25919: huffman@48045: lift_definition times_int :: "int \ int \ int" huffman@48045: is "\(x, y) (u, v). (x*u + y*v, x*v + y*u)" huffman@48045: proof (clarsimp) huffman@48045: fix s t u v w x y z :: nat huffman@48045: assume "s + v = u + t" and "w + z = y + x" huffman@48045: hence "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x) huffman@48045: = (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)" huffman@48045: by simp huffman@48045: thus "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)" huffman@48045: by (simp add: algebra_simps) huffman@48045: qed haftmann@25919: huffman@48045: instance huffman@48045: by default (transfer, clarsimp simp: algebra_simps)+ haftmann@25919: haftmann@25919: end haftmann@25919: huffman@44709: abbreviation int :: "nat \ int" where huffman@44709: "int \ of_nat" huffman@44709: huffman@48045: lemma int_def: "int n = Abs_Integ (n, 0)" huffman@48045: by (induct n, simp add: zero_int.abs_eq, huffman@48045: simp add: one_int.abs_eq plus_int.abs_eq) haftmann@25919: huffman@48045: lemma int_transfer [transfer_rule]: huffman@48045: "(fun_rel (op =) cr_int) (\n. (n, 0)) int" huffman@48045: unfolding fun_rel_def cr_int_def int_def by simp haftmann@25919: huffman@48045: lemma int_diff_cases: huffman@48045: obtains (diff) m n where "z = int m - int n" huffman@48045: by transfer clarsimp huffman@48045: huffman@48045: subsection {* Integers are totally ordered *} haftmann@25919: huffman@48045: instantiation int :: linorder huffman@48045: begin huffman@48045: huffman@48045: lift_definition less_eq_int :: "int \ int \ bool" huffman@48045: is "\(x, y) (u, v). x + v \ u + y" huffman@48045: by auto huffman@48045: huffman@48045: lift_definition less_int :: "int \ int \ bool" huffman@48045: is "\(x, y) (u, v). x + v < u + y" huffman@48045: by auto huffman@48045: huffman@48045: instance huffman@48045: by default (transfer, force)+ huffman@48045: huffman@48045: end haftmann@25919: haftmann@25919: instantiation int :: distrib_lattice haftmann@25919: begin haftmann@25919: haftmann@25919: definition haftmann@25919: "(inf \ int \ int \ int) = min" haftmann@25919: haftmann@25919: definition haftmann@25919: "(sup \ int \ int \ int) = max" haftmann@25919: haftmann@25919: instance haftmann@25919: by intro_classes haftmann@25919: (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1) haftmann@25919: haftmann@25919: end haftmann@25919: huffman@48045: subsection {* Ordering properties of arithmetic operations *} huffman@48045: haftmann@35028: instance int :: ordered_cancel_ab_semigroup_add haftmann@25919: proof haftmann@25919: fix i j k :: int haftmann@25919: show "i \ j \ k + i \ k + j" huffman@48045: by transfer clarsimp haftmann@25919: qed haftmann@25919: haftmann@25919: text{*Strict Monotonicity of Multiplication*} haftmann@25919: haftmann@25919: text{*strict, in 1st argument; proof is by induction on k>0*} haftmann@25919: lemma zmult_zless_mono2_lemma: huffman@44709: "(i::int) 0 int k * i < int k * j" wenzelm@42676: apply (induct k) wenzelm@42676: apply simp haftmann@25919: apply (simp add: left_distrib) haftmann@25919: apply (case_tac "k=0") haftmann@25919: apply (simp_all add: add_strict_mono) haftmann@25919: done haftmann@25919: huffman@44709: lemma zero_le_imp_eq_int: "(0::int) \ k ==> \n. k = int n" huffman@48045: apply transfer huffman@48045: apply clarsimp huffman@48045: apply (rule_tac x="a - b" in exI, simp) haftmann@25919: done haftmann@25919: huffman@44709: lemma zero_less_imp_eq_int: "(0::int) < k ==> \n>0. k = int n" huffman@48045: apply transfer huffman@48045: apply clarsimp huffman@48045: apply (rule_tac x="a - b" in exI, simp) haftmann@25919: done haftmann@25919: haftmann@25919: lemma zmult_zless_mono2: "[| i k*i < k*j" haftmann@25919: apply (drule zero_less_imp_eq_int) haftmann@25919: apply (auto simp add: zmult_zless_mono2_lemma) haftmann@25919: done haftmann@25919: haftmann@25919: text{*The integers form an ordered integral domain*} huffman@48045: instantiation int :: linordered_idom huffman@48045: begin huffman@48045: huffman@48045: definition huffman@48045: zabs_def: "\i\int\ = (if i < 0 then - i else i)" huffman@48045: huffman@48045: definition huffman@48045: zsgn_def: "sgn (i\int) = (if i=0 then 0 else if 0 0 < k \ k * i < k * j" haftmann@25919: by (rule zmult_zless_mono2) haftmann@25919: show "\i\ = (if i < 0 then -i else i)" haftmann@25919: by (simp only: zabs_def) haftmann@25919: show "sgn (i\int) = (if i=0 then 0 else if 0 w + (1\int) \ z" huffman@48045: by transfer clarsimp haftmann@25919: haftmann@25919: lemma zless_iff_Suc_zadd: huffman@44709: "(w \ int) < z \ (\n. z = w + int (Suc n))" huffman@48045: apply transfer huffman@48045: apply auto huffman@48045: apply (rename_tac a b c d) huffman@48045: apply (rule_tac x="c+b - Suc(a+d)" in exI) haftmann@25919: apply arith haftmann@25919: done haftmann@25919: haftmann@25919: lemmas int_distrib = wenzelm@45607: left_distrib [of z1 z2 w] wenzelm@45607: right_distrib [of w z1 z2] wenzelm@45607: left_diff_distrib [of z1 z2 w] wenzelm@45607: right_diff_distrib [of w z1 z2] wenzelm@45607: for z1 z2 w :: int haftmann@25919: haftmann@25919: haftmann@25919: subsection {* Embedding of the Integers into any @{text ring_1}: @{text of_int}*} haftmann@25919: haftmann@25919: context ring_1 haftmann@25919: begin haftmann@25919: huffman@48045: lift_definition of_int :: "int \ 'a" is "\(i, j). of_nat i - of_nat j" huffman@48045: by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq huffman@48045: of_nat_add [symmetric] simp del: of_nat_add) haftmann@25919: haftmann@25919: lemma of_int_0 [simp]: "of_int 0 = 0" huffman@48066: by transfer simp haftmann@25919: haftmann@25919: lemma of_int_1 [simp]: "of_int 1 = 1" huffman@48066: by transfer simp haftmann@25919: haftmann@25919: lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z" huffman@48066: by transfer (clarsimp simp add: algebra_simps) haftmann@25919: haftmann@25919: lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)" huffman@48066: by (transfer fixing: uminus) clarsimp haftmann@25919: haftmann@25919: lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z" haftmann@35050: by (simp add: diff_minus Groups.diff_minus) haftmann@25919: haftmann@25919: lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z" huffman@48066: by (transfer fixing: times) (clarsimp simp add: algebra_simps of_nat_mult) haftmann@25919: haftmann@25919: text{*Collapse nested embeddings*} huffman@44709: lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n" nipkow@29667: by (induct n) auto haftmann@25919: huffman@47108: lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k" huffman@47108: by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric]) huffman@47108: huffman@47108: lemma of_int_neg_numeral [simp, code_post]: "of_int (neg_numeral k) = neg_numeral k" huffman@47108: unfolding neg_numeral_def neg_numeral_class.neg_numeral_def huffman@47108: by (simp only: of_int_minus of_int_numeral) huffman@47108: haftmann@31015: lemma of_int_power: haftmann@31015: "of_int (z ^ n) = of_int z ^ n" haftmann@31015: by (induct n) simp_all haftmann@31015: haftmann@25919: end haftmann@25919: huffman@47108: context ring_char_0 haftmann@25919: begin haftmann@25919: haftmann@25919: lemma of_int_eq_iff [simp]: haftmann@25919: "of_int w = of_int z \ w = z" huffman@48066: by transfer (clarsimp simp add: algebra_simps huffman@48066: of_nat_add [symmetric] simp del: of_nat_add) haftmann@25919: haftmann@25919: text{*Special cases where either operand is zero*} haftmann@36424: lemma of_int_eq_0_iff [simp]: haftmann@36424: "of_int z = 0 \ z = 0" haftmann@36424: using of_int_eq_iff [of z 0] by simp haftmann@36424: haftmann@36424: lemma of_int_0_eq_iff [simp]: haftmann@36424: "0 = of_int z \ z = 0" haftmann@36424: using of_int_eq_iff [of 0 z] by simp haftmann@25919: haftmann@25919: end haftmann@25919: haftmann@36424: context linordered_idom haftmann@36424: begin haftmann@36424: haftmann@35028: text{*Every @{text linordered_idom} has characteristic zero.*} haftmann@36424: subclass ring_char_0 .. haftmann@36424: haftmann@36424: lemma of_int_le_iff [simp]: haftmann@36424: "of_int w \ of_int z \ w \ z" huffman@48066: by (transfer fixing: less_eq) (clarsimp simp add: algebra_simps huffman@48066: of_nat_add [symmetric] simp del: of_nat_add) haftmann@36424: haftmann@36424: lemma of_int_less_iff [simp]: haftmann@36424: "of_int w < of_int z \ w < z" haftmann@36424: by (simp add: less_le order_less_le) haftmann@36424: haftmann@36424: lemma of_int_0_le_iff [simp]: haftmann@36424: "0 \ of_int z \ 0 \ z" haftmann@36424: using of_int_le_iff [of 0 z] by simp haftmann@36424: haftmann@36424: lemma of_int_le_0_iff [simp]: haftmann@36424: "of_int z \ 0 \ z \ 0" haftmann@36424: using of_int_le_iff [of z 0] by simp haftmann@36424: haftmann@36424: lemma of_int_0_less_iff [simp]: haftmann@36424: "0 < of_int z \ 0 < z" haftmann@36424: using of_int_less_iff [of 0 z] by simp haftmann@36424: haftmann@36424: lemma of_int_less_0_iff [simp]: haftmann@36424: "of_int z < 0 \ z < 0" haftmann@36424: using of_int_less_iff [of z 0] by simp haftmann@36424: haftmann@36424: end haftmann@25919: haftmann@25919: lemma of_int_eq_id [simp]: "of_int = id" haftmann@25919: proof haftmann@25919: fix z show "of_int z = id z" huffman@48045: by (cases z rule: int_diff_cases, simp) haftmann@25919: qed haftmann@25919: haftmann@25919: haftmann@25919: subsection {* Magnitude of an Integer, as a Natural Number: @{text nat} *} haftmann@25919: huffman@48045: lift_definition nat :: "int \ nat" is "\(x, y). x - y" huffman@48045: by auto haftmann@25919: huffman@44709: lemma nat_int [simp]: "nat (int n) = n" huffman@48045: by transfer simp haftmann@25919: huffman@44709: lemma int_nat_eq [simp]: "int (nat z) = (if 0 \ z then z else 0)" huffman@48045: by transfer clarsimp haftmann@25919: huffman@44709: corollary nat_0_le: "0 \ z ==> int (nat z) = z" haftmann@25919: by simp haftmann@25919: haftmann@25919: lemma nat_le_0 [simp]: "z \ 0 ==> nat z = 0" huffman@48045: by transfer clarsimp haftmann@25919: haftmann@25919: lemma nat_le_eq_zle: "0 < w | 0 \ z ==> (nat w \ nat z) = (w\z)" huffman@48045: by transfer (clarsimp, arith) haftmann@25919: haftmann@25919: text{*An alternative condition is @{term "0 \ w"} *} haftmann@25919: corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)" haftmann@25919: by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) haftmann@25919: haftmann@25919: corollary nat_less_eq_zless: "0 \ w ==> (nat w < nat z) = (w z" and "\m. z = int m \ P" haftmann@25919: shows P haftmann@25919: using assms by (blast dest: nat_0_le sym) haftmann@25919: huffman@44709: lemma nat_eq_iff: "(nat w = m) = (if 0 \ w then w = int m else m=0)" huffman@48045: by transfer (clarsimp simp add: le_imp_diff_is_add) haftmann@25919: huffman@44709: corollary nat_eq_iff2: "(m = nat w) = (if 0 \ w then w = int m else m=0)" haftmann@25919: by (simp only: eq_commute [of m] nat_eq_iff) haftmann@25919: haftmann@25919: lemma nat_less_iff: "0 \ w ==> (nat w < m) = (w < of_nat m)" huffman@48045: by transfer (clarsimp, arith) haftmann@25919: huffman@44709: lemma nat_le_iff: "nat x \ n \ x \ int n" huffman@48045: by transfer (clarsimp simp add: le_diff_conv) huffman@44707: huffman@44707: lemma nat_mono: "x \ y \ nat x \ nat y" huffman@48045: by transfer auto huffman@44707: nipkow@29700: lemma nat_0_iff[simp]: "nat(i::int) = 0 \ i\0" huffman@48045: by transfer clarsimp nipkow@29700: haftmann@25919: lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \ z)" haftmann@25919: by (auto simp add: nat_eq_iff2) haftmann@25919: haftmann@25919: lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)" haftmann@25919: by (insert zless_nat_conj [of 0], auto) haftmann@25919: haftmann@25919: lemma nat_add_distrib: haftmann@25919: "[| (0::int) \ z; 0 \ z' |] ==> nat (z+z') = nat z + nat z'" huffman@48045: by transfer clarsimp haftmann@25919: haftmann@25919: lemma nat_diff_distrib: haftmann@25919: "[| (0::int) \ z'; z' \ z |] ==> nat (z-z') = nat z - nat z'" huffman@48045: by transfer clarsimp haftmann@25919: huffman@44709: lemma nat_zminus_int [simp]: "nat (- int n) = 0" huffman@48045: by transfer simp haftmann@25919: huffman@44709: lemma zless_nat_eq_int_zless: "(m < nat z) = (int m < z)" huffman@48045: by transfer (clarsimp simp add: less_diff_conv) haftmann@25919: haftmann@25919: context ring_1 haftmann@25919: begin haftmann@25919: haftmann@25919: lemma of_nat_nat: "0 \ z \ of_nat (nat z) = of_int z" huffman@48066: by transfer (clarsimp simp add: of_nat_diff) haftmann@25919: haftmann@25919: end haftmann@25919: krauss@29779: text {* For termination proofs: *} krauss@29779: lemma measure_function_int[measure_function]: "is_measure (nat o abs)" .. krauss@29779: haftmann@25919: haftmann@25919: subsection{*Lemmas about the Function @{term of_nat} and Orderings*} haftmann@25919: huffman@44709: lemma negative_zless_0: "- (int (Suc n)) < (0 \ int)" haftmann@25919: by (simp add: order_less_le del: of_nat_Suc) haftmann@25919: huffman@44709: lemma negative_zless [iff]: "- (int (Suc n)) < int m" haftmann@25919: by (rule negative_zless_0 [THEN order_less_le_trans], simp) haftmann@25919: huffman@44709: lemma negative_zle_0: "- int n \ 0" haftmann@25919: by (simp add: minus_le_iff) haftmann@25919: huffman@44709: lemma negative_zle [iff]: "- int n \ int m" haftmann@25919: by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff]) haftmann@25919: huffman@44709: lemma not_zle_0_negative [simp]: "~ (0 \ - (int (Suc n)))" haftmann@25919: by (subst le_minus_iff, simp del: of_nat_Suc) haftmann@25919: huffman@44709: lemma int_zle_neg: "(int n \ - int m) = (n = 0 & m = 0)" huffman@48045: by transfer simp haftmann@25919: huffman@44709: lemma not_int_zless_negative [simp]: "~ (int n < - int m)" haftmann@25919: by (simp add: linorder_not_less) haftmann@25919: huffman@44709: lemma negative_eq_positive [simp]: "(- int n = of_nat m) = (n = 0 & m = 0)" haftmann@25919: by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg) haftmann@25919: huffman@44709: lemma zle_iff_zadd: "w \ z \ (\n. z = w + int n)" haftmann@25919: proof - haftmann@25919: have "(w \ z) = (0 \ z - w)" haftmann@25919: by (simp only: le_diff_eq add_0_left) haftmann@25919: also have "\ = (\n. z - w = of_nat n)" haftmann@25919: by (auto elim: zero_le_imp_eq_int) haftmann@25919: also have "\ = (\n. z = w + of_nat n)" nipkow@29667: by (simp only: algebra_simps) haftmann@25919: finally show ?thesis . haftmann@25919: qed haftmann@25919: huffman@44709: lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z" haftmann@25919: by simp haftmann@25919: huffman@44709: lemma int_Suc0_eq_1: "int (Suc 0) = 1" haftmann@25919: by simp haftmann@25919: haftmann@25919: text{*This version is proved for all ordered rings, not just integers! haftmann@25919: It is proved here because attribute @{text arith_split} is not available haftmann@35050: in theory @{text Rings}. haftmann@25919: But is it really better than just rewriting with @{text abs_if}?*} blanchet@35828: lemma abs_split [arith_split,no_atp]: haftmann@35028: "P(abs(a::'a::linordered_idom)) = ((0 \ a --> P a) & (a < 0 --> P(-a)))" haftmann@25919: by (force dest: order_less_le_trans simp add: abs_if linorder_not_less) haftmann@25919: huffman@44709: lemma negD: "x < 0 \ \n. x = - (int (Suc n))" huffman@48045: apply transfer huffman@48045: apply clarsimp huffman@48045: apply (rule_tac x="b - Suc a" in exI, arith) haftmann@25919: done haftmann@25919: haftmann@25919: haftmann@25919: subsection {* Cases and induction *} haftmann@25919: haftmann@25919: text{*Now we replace the case analysis rule by a more conventional one: haftmann@25919: whether an integer is negative or not.*} haftmann@25919: wenzelm@42676: theorem int_cases [case_names nonneg neg, cases type: int]: huffman@44709: "[|!! n. z = int n ==> P; !! n. z = - (int (Suc n)) ==> P |] ==> P" wenzelm@42676: apply (cases "z < 0") wenzelm@42676: apply (blast dest!: negD) haftmann@25919: apply (simp add: linorder_not_less del: of_nat_Suc) haftmann@25919: apply auto haftmann@25919: apply (blast dest: nat_0_le [THEN sym]) haftmann@25919: done haftmann@25919: wenzelm@42676: theorem int_of_nat_induct [case_names nonneg neg, induct type: int]: huffman@44709: "[|!! n. P (int n); !!n. P (- (int (Suc n))) |] ==> P z" wenzelm@42676: by (cases z) auto haftmann@25919: huffman@47207: lemma nonneg_int_cases: huffman@47207: assumes "0 \ k" obtains n where "k = int n" huffman@47207: using assms by (cases k, simp, simp del: of_nat_Suc) huffman@47207: huffman@47108: lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)" huffman@47108: -- {* Unfold all @{text let}s involving constants *} huffman@47108: unfolding Let_def .. haftmann@37767: huffman@47108: lemma Let_neg_numeral [simp]: "Let (neg_numeral v) f = f (neg_numeral v)" haftmann@25919: -- {* Unfold all @{text let}s involving constants *} haftmann@25919: unfolding Let_def .. haftmann@25919: huffman@47108: text {* Unfold @{text min} and @{text max} on numerals. *} huffman@28958: huffman@47108: lemmas max_number_of [simp] = huffman@47108: max_def [of "numeral u" "numeral v"] huffman@47108: max_def [of "numeral u" "neg_numeral v"] huffman@47108: max_def [of "neg_numeral u" "numeral v"] huffman@47108: max_def [of "neg_numeral u" "neg_numeral v"] for u v huffman@28958: huffman@47108: lemmas min_number_of [simp] = huffman@47108: min_def [of "numeral u" "numeral v"] huffman@47108: min_def [of "numeral u" "neg_numeral v"] huffman@47108: min_def [of "neg_numeral u" "numeral v"] huffman@47108: min_def [of "neg_numeral u" "neg_numeral v"] for u v huffman@26075: haftmann@25919: huffman@28958: subsubsection {* Binary comparisons *} huffman@28958: huffman@28958: text {* Preliminaries *} huffman@28958: huffman@28958: lemma even_less_0_iff: haftmann@35028: "a + a < 0 \ a < (0::'a::linordered_idom)" huffman@28958: proof - huffman@47108: have "a + a < 0 \ (1+1)*a < 0" by (simp add: left_distrib del: one_add_one) huffman@28958: also have "(1+1)*a < 0 \ a < 0" huffman@28958: by (simp add: mult_less_0_iff zero_less_two huffman@28958: order_less_not_sym [OF zero_less_two]) huffman@28958: finally show ?thesis . huffman@28958: qed huffman@28958: huffman@28958: lemma le_imp_0_less: huffman@28958: assumes le: "0 \ z" huffman@28958: shows "(0::int) < 1 + z" huffman@28958: proof - huffman@28958: have "0 \ z" by fact huffman@47108: also have "... < z + 1" by (rule less_add_one) huffman@28958: also have "... = 1 + z" by (simp add: add_ac) huffman@28958: finally show "0 < 1 + z" . huffman@28958: qed huffman@28958: huffman@28958: lemma odd_less_0_iff: huffman@28958: "(1 + z + z < 0) = (z < (0::int))" wenzelm@42676: proof (cases z) huffman@28958: case (nonneg n) huffman@28958: thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing huffman@28958: le_imp_0_less [THEN order_less_imp_le]) huffman@28958: next huffman@28958: case (neg n) huffman@30079: thus ?thesis by (simp del: of_nat_Suc of_nat_add of_nat_1 huffman@30079: add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric]) huffman@28958: qed huffman@28958: huffman@28958: subsubsection {* Comparisons, for Ordered Rings *} haftmann@25919: haftmann@25919: lemmas double_eq_0_iff = double_zero haftmann@25919: haftmann@25919: lemma odd_nonzero: haftmann@33296: "1 + z + z \ (0::int)" wenzelm@42676: proof (cases z) haftmann@25919: case (nonneg n) haftmann@25919: have le: "0 \ z+z" by (simp add: nonneg add_increasing) haftmann@25919: thus ?thesis using le_imp_0_less [OF le] haftmann@25919: by (auto simp add: add_assoc) haftmann@25919: next haftmann@25919: case (neg n) haftmann@25919: show ?thesis haftmann@25919: proof haftmann@25919: assume eq: "1 + z + z = 0" huffman@44709: have "(0::int) < 1 + (int n + int n)" haftmann@25919: by (simp add: le_imp_0_less add_increasing) haftmann@25919: also have "... = - (1 + z + z)" haftmann@25919: by (simp add: neg add_assoc [symmetric]) haftmann@25919: also have "... = 0" by (simp add: eq) haftmann@25919: finally have "0<0" .. haftmann@25919: thus False by blast haftmann@25919: qed haftmann@25919: qed haftmann@25919: haftmann@30652: haftmann@25919: subsection {* The Set of Integers *} haftmann@25919: haftmann@25919: context ring_1 haftmann@25919: begin haftmann@25919: haftmann@30652: definition Ints :: "'a set" where haftmann@37767: "Ints = range of_int" haftmann@25919: haftmann@25919: notation (xsymbols) haftmann@25919: Ints ("\") haftmann@25919: huffman@35634: lemma Ints_of_int [simp]: "of_int z \ \" huffman@35634: by (simp add: Ints_def) huffman@35634: huffman@35634: lemma Ints_of_nat [simp]: "of_nat n \ \" huffman@45533: using Ints_of_int [of "of_nat n"] by simp huffman@35634: haftmann@25919: lemma Ints_0 [simp]: "0 \ \" huffman@45533: using Ints_of_int [of "0"] by simp haftmann@25919: haftmann@25919: lemma Ints_1 [simp]: "1 \ \" huffman@45533: using Ints_of_int [of "1"] by simp haftmann@25919: haftmann@25919: lemma Ints_add [simp]: "a \ \ \ b \ \ \ a + b \ \" haftmann@25919: apply (auto simp add: Ints_def) haftmann@25919: apply (rule range_eqI) haftmann@25919: apply (rule of_int_add [symmetric]) haftmann@25919: done haftmann@25919: haftmann@25919: lemma Ints_minus [simp]: "a \ \ \ -a \ \" haftmann@25919: apply (auto simp add: Ints_def) haftmann@25919: apply (rule range_eqI) haftmann@25919: apply (rule of_int_minus [symmetric]) haftmann@25919: done haftmann@25919: huffman@35634: lemma Ints_diff [simp]: "a \ \ \ b \ \ \ a - b \ \" huffman@35634: apply (auto simp add: Ints_def) huffman@35634: apply (rule range_eqI) huffman@35634: apply (rule of_int_diff [symmetric]) huffman@35634: done huffman@35634: haftmann@25919: lemma Ints_mult [simp]: "a \ \ \ b \ \ \ a * b \ \" haftmann@25919: apply (auto simp add: Ints_def) haftmann@25919: apply (rule range_eqI) haftmann@25919: apply (rule of_int_mult [symmetric]) haftmann@25919: done haftmann@25919: huffman@35634: lemma Ints_power [simp]: "a \ \ \ a ^ n \ \" huffman@35634: by (induct n) simp_all huffman@35634: haftmann@25919: lemma Ints_cases [cases set: Ints]: haftmann@25919: assumes "q \ \" haftmann@25919: obtains (of_int) z where "q = of_int z" haftmann@25919: unfolding Ints_def haftmann@25919: proof - haftmann@25919: from `q \ \` have "q \ range of_int" unfolding Ints_def . haftmann@25919: then obtain z where "q = of_int z" .. haftmann@25919: then show thesis .. haftmann@25919: qed haftmann@25919: haftmann@25919: lemma Ints_induct [case_names of_int, induct set: Ints]: haftmann@25919: "q \ \ \ (\z. P (of_int z)) \ P q" haftmann@25919: by (rule Ints_cases) auto haftmann@25919: haftmann@25919: end haftmann@25919: haftmann@25919: text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *} haftmann@25919: haftmann@25919: lemma Ints_double_eq_0_iff: haftmann@25919: assumes in_Ints: "a \ Ints" haftmann@25919: shows "(a + a = 0) = (a = (0::'a::ring_char_0))" haftmann@25919: proof - haftmann@25919: from in_Ints have "a \ range of_int" unfolding Ints_def [symmetric] . haftmann@25919: then obtain z where a: "a = of_int z" .. haftmann@25919: show ?thesis haftmann@25919: proof haftmann@25919: assume "a = 0" haftmann@25919: thus "a + a = 0" by simp haftmann@25919: next haftmann@25919: assume eq: "a + a = 0" haftmann@25919: hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a) haftmann@25919: hence "z + z = 0" by (simp only: of_int_eq_iff) haftmann@25919: hence "z = 0" by (simp only: double_eq_0_iff) haftmann@25919: thus "a = 0" by (simp add: a) haftmann@25919: qed haftmann@25919: qed haftmann@25919: haftmann@25919: lemma Ints_odd_nonzero: haftmann@25919: assumes in_Ints: "a \ Ints" haftmann@25919: shows "1 + a + a \ (0::'a::ring_char_0)" haftmann@25919: proof - haftmann@25919: from in_Ints have "a \ range of_int" unfolding Ints_def [symmetric] . haftmann@25919: then obtain z where a: "a = of_int z" .. haftmann@25919: show ?thesis haftmann@25919: proof haftmann@25919: assume eq: "1 + a + a = 0" haftmann@25919: hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a) haftmann@25919: hence "1 + z + z = 0" by (simp only: of_int_eq_iff) haftmann@25919: with odd_nonzero show False by blast haftmann@25919: qed haftmann@25919: qed haftmann@25919: huffman@47108: lemma Nats_numeral [simp]: "numeral w \ Nats" huffman@47108: using of_nat_in_Nats [of "numeral w"] by simp huffman@35634: haftmann@25919: lemma Ints_odd_less_0: haftmann@25919: assumes in_Ints: "a \ Ints" haftmann@35028: shows "(1 + a + a < 0) = (a < (0::'a::linordered_idom))" haftmann@25919: proof - haftmann@25919: from in_Ints have "a \ range of_int" unfolding Ints_def [symmetric] . haftmann@25919: then obtain z where a: "a = of_int z" .. haftmann@25919: hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" haftmann@25919: by (simp add: a) huffman@45532: also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0_iff) haftmann@25919: also have "... = (a < 0)" by (simp add: a) haftmann@25919: finally show ?thesis . haftmann@25919: qed haftmann@25919: haftmann@25919: haftmann@25919: subsection {* @{term setsum} and @{term setprod} *} haftmann@25919: haftmann@25919: lemma of_nat_setsum: "of_nat (setsum f A) = (\x\A. of_nat(f x))" haftmann@25919: apply (cases "finite A") haftmann@25919: apply (erule finite_induct, auto) haftmann@25919: done haftmann@25919: haftmann@25919: lemma of_int_setsum: "of_int (setsum f A) = (\x\A. of_int(f x))" haftmann@25919: apply (cases "finite A") haftmann@25919: apply (erule finite_induct, auto) haftmann@25919: done haftmann@25919: haftmann@25919: lemma of_nat_setprod: "of_nat (setprod f A) = (\x\A. of_nat(f x))" haftmann@25919: apply (cases "finite A") haftmann@25919: apply (erule finite_induct, auto simp add: of_nat_mult) haftmann@25919: done haftmann@25919: haftmann@25919: lemma of_int_setprod: "of_int (setprod f A) = (\x\A. of_int(f x))" haftmann@25919: apply (cases "finite A") haftmann@25919: apply (erule finite_induct, auto) haftmann@25919: done haftmann@25919: haftmann@25919: lemmas int_setsum = of_nat_setsum [where 'a=int] haftmann@25919: lemmas int_setprod = of_nat_setprod [where 'a=int] haftmann@25919: haftmann@25919: haftmann@25919: text {* Legacy theorems *} haftmann@25919: haftmann@25919: lemmas zle_int = of_nat_le_iff [where 'a=int] haftmann@25919: lemmas int_int_eq = of_nat_eq_iff [where 'a=int] huffman@47108: lemmas numeral_1_eq_1 = numeral_One haftmann@25919: huffman@30802: subsection {* Setting up simplification procedures *} huffman@30802: huffman@30802: lemmas int_arith_rules = huffman@47108: neg_le_iff_le numeral_One huffman@30802: minus_zero diff_minus left_minus right_minus huffman@45219: mult_zero_left mult_zero_right mult_1_left mult_1_right huffman@30802: mult_minus_left mult_minus_right huffman@30802: minus_add_distrib minus_minus mult_assoc huffman@30802: of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult huffman@30802: of_int_0 of_int_1 of_int_add of_int_mult huffman@30802: wenzelm@48891: ML_file "Tools/int_arith.ML" haftmann@30496: declaration {* K Int_Arith.setup *} haftmann@25919: huffman@47108: simproc_setup fast_arith ("(m::'a::linordered_idom) < n" | huffman@47108: "(m::'a::linordered_idom) <= n" | huffman@47108: "(m::'a::linordered_idom) = n") = wenzelm@43595: {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *} wenzelm@43595: haftmann@25919: haftmann@25919: subsection{*Lemmas About Small Numerals*} haftmann@25919: haftmann@25919: lemma abs_power_minus_one [simp]: huffman@47108: "abs(-1 ^ n) = (1::'a::linordered_idom)" haftmann@25919: by (simp add: power_abs) haftmann@25919: haftmann@25919: haftmann@25919: subsection{*More Inequality Reasoning*} haftmann@25919: haftmann@25919: lemma zless_add1_eq: "(w < z + (1::int)) = (w z) = (w z - (1::int)) = (wz)" haftmann@25919: by arith haftmann@25919: haftmann@25919: lemma int_one_le_iff_zero_less: "((1::int) \ z) = (0 < z)" haftmann@25919: by arith haftmann@25919: haftmann@25919: huffman@28958: subsection{*The functions @{term nat} and @{term int}*} haftmann@25919: huffman@48044: text{*Simplify the term @{term "w + - z"}*} huffman@48045: lemmas diff_int_def_symmetric = diff_def [where 'a=int, symmetric, simp] haftmann@25919: huffman@44695: lemma nat_0 [simp]: "nat 0 = 0" haftmann@25919: by (simp add: nat_eq_iff) haftmann@25919: huffman@47207: lemma nat_1 [simp]: "nat 1 = Suc 0" haftmann@25919: by (subst nat_eq_iff, simp) haftmann@25919: haftmann@25919: lemma nat_2: "nat 2 = Suc (Suc 0)" haftmann@25919: by (subst nat_eq_iff, simp) haftmann@25919: haftmann@25919: lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)" haftmann@25919: apply (insert zless_nat_conj [of 1 z]) huffman@47207: apply auto haftmann@25919: done haftmann@25919: haftmann@25919: text{*This simplifies expressions of the form @{term "int n = z"} where haftmann@25919: z is an integer literal.*} huffman@47108: lemmas int_eq_iff_numeral [simp] = int_eq_iff [of _ "numeral v"] for v haftmann@25919: haftmann@25919: lemma split_nat [arith_split]: huffman@44709: "P(nat(i::int)) = ((\n. i = int n \ P n) & (i < 0 \ P 0))" haftmann@25919: (is "?P = (?L & ?R)") haftmann@25919: proof (cases "i < 0") haftmann@25919: case True thus ?thesis by auto haftmann@25919: next haftmann@25919: case False haftmann@25919: have "?P = ?L" haftmann@25919: proof haftmann@25919: assume ?P thus ?L using False by clarsimp haftmann@25919: next haftmann@25919: assume ?L thus ?P using False by simp haftmann@25919: qed haftmann@25919: with False show ?thesis by simp haftmann@25919: qed haftmann@25919: haftmann@25919: context ring_1 haftmann@25919: begin haftmann@25919: blanchet@33056: lemma of_int_of_nat [nitpick_simp]: haftmann@25919: "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))" haftmann@25919: proof (cases "k < 0") haftmann@25919: case True then have "0 \ - k" by simp haftmann@25919: then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat) haftmann@25919: with True show ?thesis by simp haftmann@25919: next haftmann@25919: case False then show ?thesis by (simp add: not_less of_nat_nat) haftmann@25919: qed haftmann@25919: haftmann@25919: end haftmann@25919: haftmann@25919: lemma nat_mult_distrib: haftmann@25919: fixes z z' :: int haftmann@25919: assumes "0 \ z" haftmann@25919: shows "nat (z * z') = nat z * nat z'" haftmann@25919: proof (cases "0 \ z'") haftmann@25919: case False with assms have "z * z' \ 0" haftmann@25919: by (simp add: not_le mult_le_0_iff) haftmann@25919: then have "nat (z * z') = 0" by simp haftmann@25919: moreover from False have "nat z' = 0" by simp haftmann@25919: ultimately show ?thesis by simp haftmann@25919: next haftmann@25919: case True with assms have ge_0: "z * z' \ 0" by (simp add: zero_le_mult_iff) haftmann@25919: show ?thesis haftmann@25919: by (rule injD [of "of_nat :: nat \ int", OF inj_of_nat]) haftmann@25919: (simp only: of_nat_mult of_nat_nat [OF True] haftmann@25919: of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp) haftmann@25919: qed haftmann@25919: haftmann@25919: lemma nat_mult_distrib_neg: "z \ (0::int) ==> nat(z*z') = nat(-z) * nat(-z')" haftmann@25919: apply (rule trans) haftmann@25919: apply (rule_tac [2] nat_mult_distrib, auto) haftmann@25919: done haftmann@25919: haftmann@25919: lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)" haftmann@25919: apply (cases "z=0 | w=0") haftmann@25919: apply (auto simp add: abs_if nat_mult_distrib [symmetric] haftmann@25919: nat_mult_distrib_neg [symmetric] mult_less_0_iff) haftmann@25919: done haftmann@25919: huffman@47207: lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" huffman@47207: apply (rule sym) huffman@47207: apply (simp add: nat_eq_iff) huffman@47207: done huffman@47207: huffman@47207: lemma diff_nat_eq_if: huffman@47207: "nat z - nat z' = huffman@47207: (if z' < 0 then nat z huffman@47207: else let d = z-z' in huffman@47207: if d < 0 then 0 else nat d)" huffman@47207: by (simp add: Let_def nat_diff_distrib [symmetric]) huffman@47207: huffman@47207: (* nat_diff_distrib has too-strong premises *) huffman@47207: lemma nat_diff_distrib': "\0 \ x; 0 \ y\ \ nat (x - y) = nat x - nat y" huffman@47207: apply (rule int_int_eq [THEN iffD1], clarsimp) huffman@47207: apply (subst of_nat_diff) huffman@47207: apply (rule nat_mono, simp_all) huffman@47207: done huffman@47207: huffman@47207: lemma nat_numeral [simp, code_abbrev]: huffman@47207: "nat (numeral k) = numeral k" huffman@47207: by (simp add: nat_eq_iff) huffman@47207: huffman@47207: lemma nat_neg_numeral [simp]: huffman@47207: "nat (neg_numeral k) = 0" huffman@47207: by simp huffman@47207: huffman@47207: lemma diff_nat_numeral [simp]: huffman@47207: "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')" huffman@47207: by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral) huffman@47207: huffman@47207: lemma nat_numeral_diff_1 [simp]: huffman@47207: "numeral v - (1::nat) = nat (numeral v - 1)" huffman@47207: using diff_nat_numeral [of v Num.One] by simp huffman@47207: huffman@47255: lemmas nat_arith = diff_nat_numeral huffman@47255: haftmann@25919: haftmann@25919: subsection "Induction principles for int" haftmann@25919: haftmann@25919: text{*Well-founded segments of the integers*} haftmann@25919: haftmann@25919: definition haftmann@25919: int_ge_less_than :: "int => (int * int) set" haftmann@25919: where haftmann@25919: "int_ge_less_than d = {(z',z). d \ z' & z' < z}" haftmann@25919: haftmann@25919: theorem wf_int_ge_less_than: "wf (int_ge_less_than d)" haftmann@25919: proof - haftmann@25919: have "int_ge_less_than d \ measure (%z. nat (z-d))" haftmann@25919: by (auto simp add: int_ge_less_than_def) haftmann@25919: thus ?thesis haftmann@25919: by (rule wf_subset [OF wf_measure]) haftmann@25919: qed haftmann@25919: haftmann@25919: text{*This variant looks odd, but is typical of the relations suggested haftmann@25919: by RankFinder.*} haftmann@25919: haftmann@25919: definition haftmann@25919: int_ge_less_than2 :: "int => (int * int) set" haftmann@25919: where haftmann@25919: "int_ge_less_than2 d = {(z',z). d \ z & z' < z}" haftmann@25919: haftmann@25919: theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)" haftmann@25919: proof - haftmann@25919: have "int_ge_less_than2 d \ measure (%z. nat (1+z-d))" haftmann@25919: by (auto simp add: int_ge_less_than2_def) haftmann@25919: thus ?thesis haftmann@25919: by (rule wf_subset [OF wf_measure]) haftmann@25919: qed haftmann@25919: haftmann@25919: (* `set:int': dummy construction *) haftmann@25919: theorem int_ge_induct [case_names base step, induct set: int]: haftmann@25919: fixes i :: int haftmann@25919: assumes ge: "k \ i" and haftmann@25919: base: "P k" and haftmann@25919: step: "\i. k \ i \ P i \ P (i + 1)" haftmann@25919: shows "P i" haftmann@25919: proof - wenzelm@42676: { fix n wenzelm@42676: have "\i::int. n = nat (i - k) \ k \ i \ P i" haftmann@25919: proof (induct n) haftmann@25919: case 0 haftmann@25919: hence "i = k" by arith haftmann@25919: thus "P i" using base by simp haftmann@25919: next haftmann@25919: case (Suc n) haftmann@25919: then have "n = nat((i - 1) - k)" by arith haftmann@25919: moreover haftmann@25919: have ki1: "k \ i - 1" using Suc.prems by arith haftmann@25919: ultimately wenzelm@42676: have "P (i - 1)" by (rule Suc.hyps) wenzelm@42676: from step [OF ki1 this] show ?case by simp haftmann@25919: qed haftmann@25919: } haftmann@25919: with ge show ?thesis by fast haftmann@25919: qed haftmann@25919: haftmann@25928: (* `set:int': dummy construction *) haftmann@25928: theorem int_gr_induct [case_names base step, induct set: int]: haftmann@25919: assumes gr: "k < (i::int)" and haftmann@25919: base: "P(k+1)" and haftmann@25919: step: "\i. \k < i; P i\ \ P(i+1)" haftmann@25919: shows "P i" haftmann@25919: apply(rule int_ge_induct[of "k + 1"]) haftmann@25919: using gr apply arith haftmann@25919: apply(rule base) haftmann@25919: apply (rule step, simp+) haftmann@25919: done haftmann@25919: wenzelm@42676: theorem int_le_induct [consumes 1, case_names base step]: haftmann@25919: assumes le: "i \ (k::int)" and haftmann@25919: base: "P(k)" and haftmann@25919: step: "\i. \i \ k; P i\ \ P(i - 1)" haftmann@25919: shows "P i" haftmann@25919: proof - wenzelm@42676: { fix n wenzelm@42676: have "\i::int. n = nat(k-i) \ i \ k \ P i" haftmann@25919: proof (induct n) haftmann@25919: case 0 haftmann@25919: hence "i = k" by arith haftmann@25919: thus "P i" using base by simp haftmann@25919: next haftmann@25919: case (Suc n) wenzelm@42676: hence "n = nat (k - (i + 1))" by arith haftmann@25919: moreover haftmann@25919: have ki1: "i + 1 \ k" using Suc.prems by arith haftmann@25919: ultimately wenzelm@42676: have "P (i + 1)" by(rule Suc.hyps) haftmann@25919: from step[OF ki1 this] show ?case by simp haftmann@25919: qed haftmann@25919: } haftmann@25919: with le show ?thesis by fast haftmann@25919: qed haftmann@25919: wenzelm@42676: theorem int_less_induct [consumes 1, case_names base step]: haftmann@25919: assumes less: "(i::int) < k" and haftmann@25919: base: "P(k - 1)" and haftmann@25919: step: "\i. \i < k; P i\ \ P(i - 1)" haftmann@25919: shows "P i" haftmann@25919: apply(rule int_le_induct[of _ "k - 1"]) haftmann@25919: using less apply arith haftmann@25919: apply(rule base) haftmann@25919: apply (rule step, simp+) haftmann@25919: done haftmann@25919: haftmann@36811: theorem int_induct [case_names base step1 step2]: haftmann@36801: fixes k :: int haftmann@36801: assumes base: "P k" haftmann@36801: and step1: "\i. k \ i \ P i \ P (i + 1)" haftmann@36801: and step2: "\i. k \ i \ P i \ P (i - 1)" haftmann@36801: shows "P i" haftmann@36801: proof - haftmann@36801: have "i \ k \ i \ k" by arith wenzelm@42676: then show ?thesis wenzelm@42676: proof wenzelm@42676: assume "i \ k" wenzelm@42676: then show ?thesis using base haftmann@36801: by (rule int_ge_induct) (fact step1) haftmann@36801: next wenzelm@42676: assume "i \ k" wenzelm@42676: then show ?thesis using base haftmann@36801: by (rule int_le_induct) (fact step2) haftmann@36801: qed haftmann@36801: qed haftmann@36801: haftmann@25919: subsection{*Intermediate value theorems*} haftmann@25919: haftmann@25919: lemma int_val_lemma: haftmann@25919: "(\i 1) --> haftmann@25919: f 0 \ k --> k \ f n --> (\i \ n. f i = (k::int))" huffman@30079: unfolding One_nat_def wenzelm@42676: apply (induct n) wenzelm@42676: apply simp haftmann@25919: apply (intro strip) haftmann@25919: apply (erule impE, simp) haftmann@25919: apply (erule_tac x = n in allE, simp) huffman@30079: apply (case_tac "k = f (Suc n)") haftmann@27106: apply force haftmann@25919: apply (erule impE) haftmann@25919: apply (simp add: abs_if split add: split_if_asm) haftmann@25919: apply (blast intro: le_SucI) haftmann@25919: done haftmann@25919: haftmann@25919: lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)] haftmann@25919: haftmann@25919: lemma nat_intermed_int_val: haftmann@25919: "[| \i. m \ i & i < n --> abs(f(i + 1::nat) - f i) \ 1; m < n; haftmann@25919: f m \ k; k \ f n |] ==> ? i. m \ i & i \ n & f i = (k::int)" haftmann@25919: apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k haftmann@25919: in int_val_lemma) huffman@30079: unfolding One_nat_def haftmann@25919: apply simp haftmann@25919: apply (erule exE) haftmann@25919: apply (rule_tac x = "i+m" in exI, arith) haftmann@25919: done haftmann@25919: haftmann@25919: haftmann@25919: subsection{*Products and 1, by T. M. Rasmussen*} haftmann@25919: haftmann@25919: lemma zabs_less_one_iff [simp]: "(\z\ < 1) = (z = (0::int))" haftmann@25919: by arith haftmann@25919: paulson@34055: lemma abs_zmult_eq_1: paulson@34055: assumes mn: "\m * n\ = 1" paulson@34055: shows "\m\ = (1::int)" paulson@34055: proof - paulson@34055: have 0: "m \ 0 & n \ 0" using mn paulson@34055: by auto paulson@34055: have "~ (2 \ \m\)" paulson@34055: proof paulson@34055: assume "2 \ \m\" paulson@34055: hence "2*\n\ \ \m\*\n\" paulson@34055: by (simp add: mult_mono 0) paulson@34055: also have "... = \m*n\" paulson@34055: by (simp add: abs_mult) paulson@34055: also have "... = 1" paulson@34055: by (simp add: mn) paulson@34055: finally have "2*\n\ \ 1" . paulson@34055: thus "False" using 0 huffman@47108: by arith paulson@34055: qed paulson@34055: thus ?thesis using 0 paulson@34055: by auto paulson@34055: qed haftmann@25919: huffman@47108: ML_val {* @{const_name neg_numeral} *} huffman@47108: haftmann@25919: lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1" haftmann@25919: by (insert abs_zmult_eq_1 [of m n], arith) haftmann@25919: boehmes@35815: lemma pos_zmult_eq_1_iff: boehmes@35815: assumes "0 < (m::int)" shows "(m * n = 1) = (m = 1 & n = 1)" boehmes@35815: proof - boehmes@35815: from assms have "m * n = 1 ==> m = 1" by (auto dest: pos_zmult_eq_1_iff_lemma) boehmes@35815: thus ?thesis by (auto dest: pos_zmult_eq_1_iff_lemma) boehmes@35815: qed haftmann@25919: haftmann@25919: lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))" haftmann@25919: apply (rule iffI) haftmann@25919: apply (frule pos_zmult_eq_1_iff_lemma) haftmann@25919: apply (simp add: mult_commute [of m]) haftmann@25919: apply (frule pos_zmult_eq_1_iff_lemma, auto) haftmann@25919: done haftmann@25919: haftmann@33296: lemma infinite_UNIV_int: "\ finite (UNIV::int set)" haftmann@25919: proof haftmann@33296: assume "finite (UNIV::int set)" haftmann@33296: moreover have "inj (\i\int. 2 * i)" haftmann@33296: by (rule injI) simp haftmann@33296: ultimately have "surj (\i\int. 2 * i)" haftmann@33296: by (rule finite_UNIV_inj_surj) haftmann@33296: then obtain i :: int where "1 = 2 * i" by (rule surjE) haftmann@33296: then show False by (simp add: pos_zmult_eq_1_iff) haftmann@25919: qed haftmann@25919: haftmann@25919: haftmann@30652: subsection {* Further theorems on numerals *} haftmann@30652: haftmann@30652: subsubsection{*Special Simplification for Constants*} haftmann@30652: haftmann@30652: text{*These distributive laws move literals inside sums and differences.*} haftmann@30652: huffman@47108: lemmas left_distrib_numeral [simp] = left_distrib [of _ _ "numeral v"] for v huffman@47108: lemmas right_distrib_numeral [simp] = right_distrib [of "numeral v"] for v huffman@47108: lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v huffman@47108: lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v haftmann@30652: haftmann@30652: text{*These are actually for fields, like real: but where else to put them?*} haftmann@30652: huffman@47108: lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w huffman@47108: lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w huffman@47108: lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w huffman@47108: lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w haftmann@30652: haftmann@30652: haftmann@30652: text {*Replaces @{text "inverse #nn"} by @{text "1/#nn"}. It looks haftmann@30652: strange, but then other simprocs simplify the quotient.*} haftmann@30652: huffman@47108: lemmas inverse_eq_divide_numeral [simp] = huffman@47108: inverse_eq_divide [of "numeral w"] for w huffman@47108: huffman@47108: lemmas inverse_eq_divide_neg_numeral [simp] = huffman@47108: inverse_eq_divide [of "neg_numeral w"] for w haftmann@30652: haftmann@30652: text {*These laws simplify inequalities, moving unary minus from a term haftmann@30652: into the literal.*} haftmann@30652: huffman@47108: lemmas le_minus_iff_numeral [simp, no_atp] = huffman@47108: le_minus_iff [of "numeral v"] huffman@47108: le_minus_iff [of "neg_numeral v"] for v huffman@47108: huffman@47108: lemmas equation_minus_iff_numeral [simp, no_atp] = huffman@47108: equation_minus_iff [of "numeral v"] huffman@47108: equation_minus_iff [of "neg_numeral v"] for v huffman@47108: huffman@47108: lemmas minus_less_iff_numeral [simp, no_atp] = huffman@47108: minus_less_iff [of _ "numeral v"] huffman@47108: minus_less_iff [of _ "neg_numeral v"] for v huffman@47108: huffman@47108: lemmas minus_le_iff_numeral [simp, no_atp] = huffman@47108: minus_le_iff [of _ "numeral v"] huffman@47108: minus_le_iff [of _ "neg_numeral v"] for v huffman@47108: huffman@47108: lemmas minus_equation_iff_numeral [simp, no_atp] = huffman@47108: minus_equation_iff [of _ "numeral v"] huffman@47108: minus_equation_iff [of _ "neg_numeral v"] for v haftmann@30652: haftmann@30652: text{*To Simplify Inequalities Where One Side is the Constant 1*} haftmann@30652: blanchet@35828: lemma less_minus_iff_1 [simp,no_atp]: huffman@47108: fixes b::"'b::linordered_idom" haftmann@30652: shows "(1 < - b) = (b < -1)" haftmann@30652: by auto haftmann@30652: blanchet@35828: lemma le_minus_iff_1 [simp,no_atp]: huffman@47108: fixes b::"'b::linordered_idom" haftmann@30652: shows "(1 \ - b) = (b \ -1)" haftmann@30652: by auto haftmann@30652: blanchet@35828: lemma equation_minus_iff_1 [simp,no_atp]: huffman@47108: fixes b::"'b::ring_1" haftmann@30652: shows "(1 = - b) = (b = -1)" haftmann@30652: by (subst equation_minus_iff, auto) haftmann@30652: blanchet@35828: lemma minus_less_iff_1 [simp,no_atp]: huffman@47108: fixes a::"'b::linordered_idom" haftmann@30652: shows "(- a < 1) = (-1 < a)" haftmann@30652: by auto haftmann@30652: blanchet@35828: lemma minus_le_iff_1 [simp,no_atp]: huffman@47108: fixes a::"'b::linordered_idom" haftmann@30652: shows "(- a \ 1) = (-1 \ a)" haftmann@30652: by auto haftmann@30652: blanchet@35828: lemma minus_equation_iff_1 [simp,no_atp]: huffman@47108: fixes a::"'b::ring_1" haftmann@30652: shows "(- a = 1) = (a = -1)" haftmann@30652: by (subst minus_equation_iff, auto) haftmann@30652: haftmann@30652: haftmann@30652: text {*Cancellation of constant factors in comparisons (@{text "<"} and @{text "\"}) *} haftmann@30652: huffman@47108: lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v huffman@47108: lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v huffman@47108: lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v huffman@47108: lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v haftmann@30652: haftmann@30652: haftmann@30652: text {*Multiplying out constant divisors in comparisons (@{text "<"}, @{text "\"} and @{text "="}) *} haftmann@30652: huffman@47108: lemmas le_divide_eq_numeral1 [simp] = huffman@47108: pos_le_divide_eq [of "numeral w", OF zero_less_numeral] huffman@47108: neg_le_divide_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w huffman@47108: huffman@47108: lemmas divide_le_eq_numeral1 [simp] = huffman@47108: pos_divide_le_eq [of "numeral w", OF zero_less_numeral] huffman@47108: neg_divide_le_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w huffman@47108: huffman@47108: lemmas less_divide_eq_numeral1 [simp] = huffman@47108: pos_less_divide_eq [of "numeral w", OF zero_less_numeral] huffman@47108: neg_less_divide_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w haftmann@30652: huffman@47108: lemmas divide_less_eq_numeral1 [simp] = huffman@47108: pos_divide_less_eq [of "numeral w", OF zero_less_numeral] huffman@47108: neg_divide_less_eq [of "neg_numeral w", OF neg_numeral_less_zero] for w huffman@47108: huffman@47108: lemmas eq_divide_eq_numeral1 [simp] = huffman@47108: eq_divide_eq [of _ _ "numeral w"] huffman@47108: eq_divide_eq [of _ _ "neg_numeral w"] for w huffman@47108: huffman@47108: lemmas divide_eq_eq_numeral1 [simp] = huffman@47108: divide_eq_eq [of _ "numeral w"] huffman@47108: divide_eq_eq [of _ "neg_numeral w"] for w haftmann@30652: haftmann@30652: subsubsection{*Optional Simplification Rules Involving Constants*} haftmann@30652: haftmann@30652: text{*Simplify quotients that are compared with a literal constant.*} haftmann@30652: huffman@47108: lemmas le_divide_eq_numeral = huffman@47108: le_divide_eq [of "numeral w"] huffman@47108: le_divide_eq [of "neg_numeral w"] for w huffman@47108: huffman@47108: lemmas divide_le_eq_numeral = huffman@47108: divide_le_eq [of _ _ "numeral w"] huffman@47108: divide_le_eq [of _ _ "neg_numeral w"] for w huffman@47108: huffman@47108: lemmas less_divide_eq_numeral = huffman@47108: less_divide_eq [of "numeral w"] huffman@47108: less_divide_eq [of "neg_numeral w"] for w huffman@47108: huffman@47108: lemmas divide_less_eq_numeral = huffman@47108: divide_less_eq [of _ _ "numeral w"] huffman@47108: divide_less_eq [of _ _ "neg_numeral w"] for w huffman@47108: huffman@47108: lemmas eq_divide_eq_numeral = huffman@47108: eq_divide_eq [of "numeral w"] huffman@47108: eq_divide_eq [of "neg_numeral w"] for w huffman@47108: huffman@47108: lemmas divide_eq_eq_numeral = huffman@47108: divide_eq_eq [of _ _ "numeral w"] huffman@47108: divide_eq_eq [of _ _ "neg_numeral w"] for w haftmann@30652: haftmann@30652: haftmann@30652: text{*Not good as automatic simprules because they cause case splits.*} haftmann@30652: lemmas divide_const_simps = huffman@47108: le_divide_eq_numeral divide_le_eq_numeral less_divide_eq_numeral huffman@47108: divide_less_eq_numeral eq_divide_eq_numeral divide_eq_eq_numeral haftmann@30652: le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1 haftmann@30652: haftmann@30652: text{*Division By @{text "-1"}*} haftmann@30652: huffman@47108: lemma divide_minus1 [simp]: "(x::'a::field) / -1 = - x" huffman@47108: unfolding minus_one [symmetric] huffman@47108: unfolding nonzero_minus_divide_right [OF one_neq_zero, symmetric] huffman@47108: by simp haftmann@30652: huffman@47108: lemma minus1_divide [simp]: "-1 / (x::'a::field) = - (1 / x)" huffman@47108: unfolding minus_one [symmetric] by (rule divide_minus_left) haftmann@30652: haftmann@30652: lemma half_gt_zero_iff: huffman@47108: "(0 < r/2) = (0 < (r::'a::linordered_field_inverse_zero))" haftmann@30652: by auto haftmann@30652: wenzelm@45607: lemmas half_gt_zero [simp] = half_gt_zero_iff [THEN iffD2] haftmann@30652: huffman@47108: lemma divide_Numeral1: "(x::'a::field) / Numeral1 = x" haftmann@36719: by simp haftmann@36719: haftmann@30652: haftmann@33320: subsection {* The divides relation *} haftmann@33320: nipkow@33657: lemma zdvd_antisym_nonneg: nipkow@33657: "0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)" haftmann@33320: apply (simp add: dvd_def, auto) nipkow@33657: apply (auto simp add: mult_assoc zero_le_mult_iff zmult_eq_1_iff) haftmann@33320: done haftmann@33320: nipkow@33657: lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a" haftmann@33320: shows "\a\ = \b\" nipkow@33657: proof cases nipkow@33657: assume "a = 0" with assms show ?thesis by simp nipkow@33657: next nipkow@33657: assume "a \ 0" haftmann@33320: from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast haftmann@33320: from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast haftmann@33320: from k k' have "a = a*k*k'" by simp haftmann@33320: with mult_cancel_left1[where c="a" and b="k*k'"] haftmann@33320: have kk':"k*k' = 1" using `a\0` by (simp add: mult_assoc) haftmann@33320: hence "k = 1 \ k' = 1 \ k = -1 \ k' = -1" by (simp add: zmult_eq_1_iff) haftmann@33320: thus ?thesis using k k' by auto haftmann@33320: qed haftmann@33320: haftmann@33320: lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)" haftmann@33320: apply (subgoal_tac "m = n + (m - n)") haftmann@33320: apply (erule ssubst) haftmann@33320: apply (blast intro: dvd_add, simp) haftmann@33320: done haftmann@33320: haftmann@33320: lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))" haftmann@33320: apply (rule iffI) haftmann@33320: apply (erule_tac [2] dvd_add) haftmann@33320: apply (subgoal_tac "n = (n + k * m) - k * m") haftmann@33320: apply (erule ssubst) haftmann@33320: apply (erule dvd_diff) haftmann@33320: apply(simp_all) haftmann@33320: done haftmann@33320: haftmann@33320: lemma dvd_imp_le_int: haftmann@33320: fixes d i :: int haftmann@33320: assumes "i \ 0" and "d dvd i" haftmann@33320: shows "\d\ \ \i\" haftmann@33320: proof - haftmann@33320: from `d dvd i` obtain k where "i = d * k" .. haftmann@33320: with `i \ 0` have "k \ 0" by auto haftmann@33320: then have "1 \ \k\" and "0 \ \d\" by auto haftmann@33320: then have "\d\ * 1 \ \d\ * \k\" by (rule mult_left_mono) haftmann@33320: with `i = d * k` show ?thesis by (simp add: abs_mult) haftmann@33320: qed haftmann@33320: haftmann@33320: lemma zdvd_not_zless: haftmann@33320: fixes m n :: int haftmann@33320: assumes "0 < m" and "m < n" haftmann@33320: shows "\ n dvd m" haftmann@33320: proof haftmann@33320: from assms have "0 < n" by auto haftmann@33320: assume "n dvd m" then obtain k where k: "m = n * k" .. haftmann@33320: with `0 < m` have "0 < n * k" by auto haftmann@33320: with `0 < n` have "0 < k" by (simp add: zero_less_mult_iff) haftmann@33320: with k `0 < n` `m < n` have "n * k < n * 1" by simp haftmann@33320: with `0 < n` `0 < k` show False unfolding mult_less_cancel_left by auto haftmann@33320: qed haftmann@33320: haftmann@33320: lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \ (0::int)" haftmann@33320: shows "m dvd n" haftmann@33320: proof- haftmann@33320: from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast haftmann@33320: {assume "n \ m*h" hence "k* n \ k* (m*h)" using kz by simp haftmann@33320: with h have False by (simp add: mult_assoc)} haftmann@33320: hence "n = m * h" by blast haftmann@33320: thus ?thesis by simp haftmann@33320: qed haftmann@33320: haftmann@33320: theorem zdvd_int: "(x dvd y) = (int x dvd int y)" haftmann@33320: proof - haftmann@33320: have "\k. int y = int x * k \ x dvd y" haftmann@33320: proof - haftmann@33320: fix k haftmann@33320: assume A: "int y = int x * k" wenzelm@42676: then show "x dvd y" wenzelm@42676: proof (cases k) wenzelm@42676: case (nonneg n) wenzelm@42676: with A have "y = x * n" by (simp add: of_nat_mult [symmetric]) haftmann@33320: then show ?thesis .. haftmann@33320: next wenzelm@42676: case (neg n) wenzelm@42676: with A have "int y = int x * (- int (Suc n))" by simp haftmann@33320: also have "\ = - (int x * int (Suc n))" by (simp only: mult_minus_right) haftmann@33320: also have "\ = - int (x * Suc n)" by (simp only: of_nat_mult [symmetric]) haftmann@33320: finally have "- int (x * Suc n) = int y" .. haftmann@33320: then show ?thesis by (simp only: negative_eq_positive) auto haftmann@33320: qed haftmann@33320: qed haftmann@33320: then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left of_nat_mult) haftmann@33320: qed haftmann@33320: wenzelm@42676: lemma zdvd1_eq[simp]: "(x::int) dvd 1 = (\x\ = 1)" haftmann@33320: proof haftmann@33320: assume d: "x dvd 1" hence "int (nat \x\) dvd int (nat 1)" by simp haftmann@33320: hence "nat \x\ dvd 1" by (simp add: zdvd_int) haftmann@33320: hence "nat \x\ = 1" by simp wenzelm@42676: thus "\x\ = 1" by (cases "x < 0") auto haftmann@33320: next haftmann@33320: assume "\x\=1" haftmann@33320: then have "x = 1 \ x = -1" by auto haftmann@33320: then show "x dvd 1" by (auto intro: dvdI) haftmann@33320: qed haftmann@33320: haftmann@33320: lemma zdvd_mult_cancel1: haftmann@33320: assumes mp:"m \(0::int)" shows "(m * n dvd m) = (\n\ = 1)" haftmann@33320: proof haftmann@33320: assume n1: "\n\ = 1" thus "m * n dvd m" wenzelm@42676: by (cases "n >0") (auto simp add: minus_equation_iff) haftmann@33320: next haftmann@33320: assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp haftmann@33320: from zdvd_mult_cancel[OF H2 mp] show "\n\ = 1" by (simp only: zdvd1_eq) haftmann@33320: qed haftmann@33320: haftmann@33320: lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))" haftmann@33320: unfolding zdvd_int by (cases "z \ 0") simp_all haftmann@33320: haftmann@33320: lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)" haftmann@33320: unfolding zdvd_int by (cases "z \ 0") simp_all haftmann@33320: haftmann@33320: lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \ z then (z dvd int m) else m = 0)" haftmann@33320: by (auto simp add: dvd_int_iff) haftmann@33320: haftmann@33341: lemma eq_nat_nat_iff: haftmann@33341: "0 \ z \ 0 \ z' \ nat z = nat z' \ z = z'" haftmann@33341: by (auto elim!: nonneg_eq_int) haftmann@33341: haftmann@33341: lemma nat_power_eq: haftmann@33341: "0 \ z \ nat (z ^ n) = nat z ^ n" haftmann@33341: by (induct n) (simp_all add: nat_mult_distrib) haftmann@33341: haftmann@33320: lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \ (n::int)" wenzelm@42676: apply (cases n) haftmann@33320: apply (auto simp add: dvd_int_iff) wenzelm@42676: apply (cases z) haftmann@33320: apply (auto simp add: dvd_imp_le) haftmann@33320: done haftmann@33320: haftmann@36749: lemma zdvd_period: haftmann@36749: fixes a d :: int haftmann@36749: assumes "a dvd d" haftmann@36749: shows "a dvd (x + t) \ a dvd ((x + c * d) + t)" haftmann@36749: proof - haftmann@36749: from assms obtain k where "d = a * k" by (rule dvdE) wenzelm@42676: show ?thesis wenzelm@42676: proof haftmann@36749: assume "a dvd (x + t)" haftmann@36749: then obtain l where "x + t = a * l" by (rule dvdE) haftmann@36749: then have "x = a * l - t" by simp haftmann@36749: with `d = a * k` show "a dvd x + c * d + t" by simp haftmann@36749: next haftmann@36749: assume "a dvd x + c * d + t" haftmann@36749: then obtain l where "x + c * d + t = a * l" by (rule dvdE) haftmann@36749: then have "x = a * l - c * d - t" by simp haftmann@36749: with `d = a * k` show "a dvd (x + t)" by simp haftmann@36749: qed haftmann@36749: qed haftmann@36749: haftmann@33320: bulwahn@46756: subsection {* Finiteness of intervals *} bulwahn@46756: bulwahn@46756: lemma finite_interval_int1 [iff]: "finite {i :: int. a <= i & i <= b}" bulwahn@46756: proof (cases "a <= b") bulwahn@46756: case True bulwahn@46756: from this show ?thesis bulwahn@46756: proof (induct b rule: int_ge_induct) bulwahn@46756: case base bulwahn@46756: have "{i. a <= i & i <= a} = {a}" by auto bulwahn@46756: from this show ?case by simp bulwahn@46756: next bulwahn@46756: case (step b) bulwahn@46756: from this have "{i. a <= i & i <= b + 1} = {i. a <= i & i <= b} \ {b + 1}" by auto bulwahn@46756: from this step show ?case by simp bulwahn@46756: qed bulwahn@46756: next bulwahn@46756: case False from this show ?thesis bulwahn@46756: by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans) bulwahn@46756: qed bulwahn@46756: bulwahn@46756: lemma finite_interval_int2 [iff]: "finite {i :: int. a <= i & i < b}" bulwahn@46756: by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto bulwahn@46756: bulwahn@46756: lemma finite_interval_int3 [iff]: "finite {i :: int. a < i & i <= b}" bulwahn@46756: by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto bulwahn@46756: bulwahn@46756: lemma finite_interval_int4 [iff]: "finite {i :: int. a < i & i < b}" bulwahn@46756: by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto bulwahn@46756: bulwahn@46756: haftmann@25919: subsection {* Configuration of the code generator *} haftmann@25919: huffman@47108: text {* Constructors *} huffman@47108: huffman@47108: definition Pos :: "num \ int" where huffman@47108: [simp, code_abbrev]: "Pos = numeral" huffman@47108: huffman@47108: definition Neg :: "num \ int" where huffman@47108: [simp, code_abbrev]: "Neg = neg_numeral" huffman@47108: huffman@47108: code_datatype "0::int" Pos Neg huffman@47108: huffman@47108: huffman@47108: text {* Auxiliary operations *} huffman@47108: huffman@47108: definition dup :: "int \ int" where huffman@47108: [simp]: "dup k = k + k" haftmann@26507: huffman@47108: lemma dup_code [code]: huffman@47108: "dup 0 = 0" huffman@47108: "dup (Pos n) = Pos (Num.Bit0 n)" huffman@47108: "dup (Neg n) = Neg (Num.Bit0 n)" huffman@47108: unfolding Pos_def Neg_def neg_numeral_def huffman@47108: by (simp_all add: numeral_Bit0) huffman@47108: huffman@47108: definition sub :: "num \ num \ int" where huffman@47108: [simp]: "sub m n = numeral m - numeral n" haftmann@26507: huffman@47108: lemma sub_code [code]: huffman@47108: "sub Num.One Num.One = 0" huffman@47108: "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" huffman@47108: "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" huffman@47108: "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" huffman@47108: "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" huffman@47108: "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" huffman@47108: "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" huffman@47108: "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" huffman@47108: "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" huffman@47108: unfolding sub_def dup_def numeral.simps Pos_def Neg_def huffman@47108: neg_numeral_def numeral_BitM huffman@47108: by (simp_all only: algebra_simps) haftmann@26507: huffman@47108: huffman@47108: text {* Implementations *} huffman@47108: huffman@47108: lemma one_int_code [code, code_unfold]: huffman@47108: "1 = Pos Num.One" huffman@47108: by simp huffman@47108: huffman@47108: lemma plus_int_code [code]: huffman@47108: "k + 0 = (k::int)" huffman@47108: "0 + l = (l::int)" huffman@47108: "Pos m + Pos n = Pos (m + n)" huffman@47108: "Pos m + Neg n = sub m n" huffman@47108: "Neg m + Pos n = sub n m" huffman@47108: "Neg m + Neg n = Neg (m + n)" huffman@47108: by simp_all haftmann@26507: huffman@47108: lemma uminus_int_code [code]: huffman@47108: "uminus 0 = (0::int)" huffman@47108: "uminus (Pos m) = Neg m" huffman@47108: "uminus (Neg m) = Pos m" huffman@47108: by simp_all huffman@47108: huffman@47108: lemma minus_int_code [code]: huffman@47108: "k - 0 = (k::int)" huffman@47108: "0 - l = uminus (l::int)" huffman@47108: "Pos m - Pos n = sub m n" huffman@47108: "Pos m - Neg n = Pos (m + n)" huffman@47108: "Neg m - Pos n = Neg (m + n)" huffman@47108: "Neg m - Neg n = sub n m" huffman@47108: by simp_all huffman@47108: huffman@47108: lemma times_int_code [code]: huffman@47108: "k * 0 = (0::int)" huffman@47108: "0 * l = (0::int)" huffman@47108: "Pos m * Pos n = Pos (m * n)" huffman@47108: "Pos m * Neg n = Neg (m * n)" huffman@47108: "Neg m * Pos n = Neg (m * n)" huffman@47108: "Neg m * Neg n = Pos (m * n)" huffman@47108: by simp_all haftmann@26507: haftmann@38857: instantiation int :: equal haftmann@26507: begin haftmann@26507: haftmann@37767: definition huffman@47108: "HOL.equal k l \ k = (l::int)" haftmann@38857: huffman@47108: instance by default (rule equal_int_def) haftmann@26507: haftmann@26507: end haftmann@26507: huffman@47108: lemma equal_int_code [code]: huffman@47108: "HOL.equal 0 (0::int) \ True" huffman@47108: "HOL.equal 0 (Pos l) \ False" huffman@47108: "HOL.equal 0 (Neg l) \ False" huffman@47108: "HOL.equal (Pos k) 0 \ False" huffman@47108: "HOL.equal (Pos k) (Pos l) \ HOL.equal k l" huffman@47108: "HOL.equal (Pos k) (Neg l) \ False" huffman@47108: "HOL.equal (Neg k) 0 \ False" huffman@47108: "HOL.equal (Neg k) (Pos l) \ False" huffman@47108: "HOL.equal (Neg k) (Neg l) \ HOL.equal k l" huffman@47108: by (auto simp add: equal) haftmann@26507: huffman@47108: lemma equal_int_refl [code nbe]: haftmann@38857: "HOL.equal (k::int) k \ True" huffman@47108: by (fact equal_refl) haftmann@26507: haftmann@28562: lemma less_eq_int_code [code]: huffman@47108: "0 \ (0::int) \ True" huffman@47108: "0 \ Pos l \ True" huffman@47108: "0 \ Neg l \ False" huffman@47108: "Pos k \ 0 \ False" huffman@47108: "Pos k \ Pos l \ k \ l" huffman@47108: "Pos k \ Neg l \ False" huffman@47108: "Neg k \ 0 \ True" huffman@47108: "Neg k \ Pos l \ True" huffman@47108: "Neg k \ Neg l \ l \ k" huffman@28958: by simp_all haftmann@26507: haftmann@28562: lemma less_int_code [code]: huffman@47108: "0 < (0::int) \ False" huffman@47108: "0 < Pos l \ True" huffman@47108: "0 < Neg l \ False" huffman@47108: "Pos k < 0 \ False" huffman@47108: "Pos k < Pos l \ k < l" huffman@47108: "Pos k < Neg l \ False" huffman@47108: "Neg k < 0 \ True" huffman@47108: "Neg k < Pos l \ True" huffman@47108: "Neg k < Neg l \ l < k" huffman@28958: by simp_all haftmann@25919: huffman@47108: lemma nat_code [code]: huffman@47108: "nat (Int.Neg k) = 0" huffman@47108: "nat 0 = 0" huffman@47108: "nat (Int.Pos k) = nat_of_num k" huffman@47108: by (simp_all add: nat_of_num_numeral nat_numeral) haftmann@25928: huffman@47108: lemma (in ring_1) of_int_code [code]: huffman@47108: "of_int (Int.Neg k) = neg_numeral k" huffman@47108: "of_int 0 = 0" huffman@47108: "of_int (Int.Pos k) = numeral k" huffman@47108: by simp_all haftmann@25919: huffman@47108: huffman@47108: text {* Serializer setup *} haftmann@25919: haftmann@25919: code_modulename SML haftmann@33364: Int Arith haftmann@25919: haftmann@25919: code_modulename OCaml haftmann@33364: Int Arith haftmann@25919: haftmann@25919: code_modulename Haskell haftmann@33364: Int Arith haftmann@25919: haftmann@25919: quickcheck_params [default_type = int] haftmann@25919: huffman@47108: hide_const (open) Pos Neg sub dup haftmann@25919: haftmann@25919: haftmann@25919: subsection {* Legacy theorems *} haftmann@25919: haftmann@25919: lemmas inj_int = inj_of_nat [where 'a=int] haftmann@25919: lemmas zadd_int = of_nat_add [where 'a=int, symmetric] haftmann@25919: lemmas int_mult = of_nat_mult [where 'a=int] haftmann@25919: lemmas zmult_int = of_nat_mult [where 'a=int, symmetric] wenzelm@45607: lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n"] for n haftmann@25919: lemmas zless_int = of_nat_less_iff [where 'a=int] wenzelm@45607: lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k"] for k haftmann@25919: lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int] haftmann@25919: lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int] wenzelm@45607: lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n"] for n haftmann@25919: lemmas int_0 = of_nat_0 [where 'a=int] haftmann@25919: lemmas int_1 = of_nat_1 [where 'a=int] haftmann@25919: lemmas int_Suc = of_nat_Suc [where 'a=int] huffman@47207: lemmas int_numeral = of_nat_numeral [where 'a=int] wenzelm@45607: lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m"] for m haftmann@25919: lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int] haftmann@25919: lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric] huffman@47255: lemmas zpower_numeral_even = power_numeral_even [where 'a=int] huffman@47255: lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int] haftmann@30960: haftmann@31015: lemma zpower_zpower: haftmann@31015: "(x ^ y) ^ z = (x ^ (y * z)::int)" haftmann@31015: by (rule power_mult [symmetric]) haftmann@31015: haftmann@31015: lemma int_power: haftmann@31015: "int (m ^ n) = int m ^ n" haftmann@31015: by (rule of_nat_power) haftmann@31015: haftmann@31015: lemmas zpower_int = int_power [symmetric] haftmann@31015: huffman@48045: text {* De-register @{text "int"} as a quotient type: *} huffman@48045: huffman@48045: lemmas [transfer_rule del] = huffman@48045: int.id_abs_transfer int.rel_eq_transfer zero_int.transfer one_int.transfer huffman@48045: plus_int.transfer uminus_int.transfer minus_int.transfer times_int.transfer huffman@48045: int_transfer less_eq_int.transfer less_int.transfer of_int.transfer huffman@48045: nat.transfer huffman@48045: huffman@48045: declare Quotient_int [quot_del] huffman@48045: haftmann@25919: end