haftmann@28952: (* Title : HOL/RealDef.thy huffman@36795: Author : Jacques D. Fleuriot, 1998 paulson@14387: Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 avigad@16819: Additional contributions by Jeremy Avigad huffman@36795: Construction of Cauchy Reals by Brian Huffman, 2010 paulson@14269: *) paulson@14269: huffman@36795: header {* Development of the Reals using Cauchy Sequences *} paulson@14387: nipkow@15131: theory RealDef huffman@36795: imports Rat nipkow@15131: begin paulson@5588: huffman@36795: text {* huffman@36795: This theory contains a formalization of the real numbers as huffman@36795: equivalence classes of Cauchy sequences of rationals. See huffman@40810: @{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative huffman@40810: construction using Dedekind cuts. huffman@36795: *} huffman@36795: huffman@36795: subsection {* Preliminary lemmas *} huffman@36795: huffman@36795: lemma add_diff_add: huffman@36795: fixes a b c d :: "'a::ab_group_add" huffman@36795: shows "(a + c) - (b + d) = (a - b) + (c - d)" huffman@36795: by simp huffman@36795: huffman@36795: lemma minus_diff_minus: huffman@36795: fixes a b :: "'a::ab_group_add" huffman@36795: shows "- a - - b = - (a - b)" huffman@36795: by simp huffman@36795: huffman@36795: lemma mult_diff_mult: huffman@36795: fixes x y a b :: "'a::ring" huffman@36795: shows "(x * y - a * b) = x * (y - b) + (x - a) * b" huffman@36795: by (simp add: algebra_simps) huffman@36795: huffman@36795: lemma inverse_diff_inverse: huffman@36795: fixes a b :: "'a::division_ring" huffman@36795: assumes "a \ 0" and "b \ 0" huffman@36795: shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)" huffman@36795: using assms by (simp add: algebra_simps) huffman@36795: huffman@36795: lemma obtain_pos_sum: huffman@36795: fixes r :: rat assumes r: "0 < r" huffman@36795: obtains s t where "0 < s" and "0 < t" and "r = s + t" huffman@36795: proof huffman@36795: from r show "0 < r/2" by simp huffman@36795: from r show "0 < r/2" by simp huffman@36795: show "r = r/2 + r/2" by simp huffman@36795: qed huffman@36795: huffman@36795: subsection {* Sequences that converge to zero *} huffman@36795: wenzelm@19765: definition huffman@36795: vanishes :: "(nat \ rat) \ bool" huffman@36795: where huffman@36795: "vanishes X = (\r>0. \k. \n\k. \X n\ < r)" huffman@36795: huffman@36795: lemma vanishesI: "(\r. 0 < r \ \k. \n\k. \X n\ < r) \ vanishes X" huffman@36795: unfolding vanishes_def by simp huffman@36795: huffman@36795: lemma vanishesD: "\vanishes X; 0 < r\ \ \k. \n\k. \X n\ < r" huffman@36795: unfolding vanishes_def by simp huffman@36795: huffman@36795: lemma vanishes_const [simp]: "vanishes (\n. c) \ c = 0" huffman@36795: unfolding vanishes_def huffman@36795: apply (cases "c = 0", auto) huffman@36795: apply (rule exI [where x="\c\"], auto) huffman@36795: done huffman@36795: huffman@36795: lemma vanishes_minus: "vanishes X \ vanishes (\n. - X n)" huffman@36795: unfolding vanishes_def by simp paulson@14269: huffman@36795: lemma vanishes_add: huffman@36795: assumes X: "vanishes X" and Y: "vanishes Y" huffman@36795: shows "vanishes (\n. X n + Y n)" huffman@36795: proof (rule vanishesI) huffman@36795: fix r :: rat assume "0 < r" huffman@36795: then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" huffman@36795: by (rule obtain_pos_sum) huffman@36795: obtain i where i: "\n\i. \X n\ < s" huffman@36795: using vanishesD [OF X s] .. huffman@36795: obtain j where j: "\n\j. \Y n\ < t" huffman@36795: using vanishesD [OF Y t] .. huffman@36795: have "\n\max i j. \X n + Y n\ < r" huffman@36795: proof (clarsimp) huffman@36795: fix n assume n: "i \ n" "j \ n" huffman@36795: have "\X n + Y n\ \ \X n\ + \Y n\" by (rule abs_triangle_ineq) huffman@36795: also have "\ < s + t" by (simp add: add_strict_mono i j n) huffman@36795: finally show "\X n + Y n\ < r" unfolding r . huffman@36795: qed huffman@36795: thus "\k. \n\k. \X n + Y n\ < r" .. huffman@36795: qed huffman@36795: huffman@36795: lemma vanishes_diff: huffman@36795: assumes X: "vanishes X" and Y: "vanishes Y" huffman@36795: shows "vanishes (\n. X n - Y n)" huffman@36795: unfolding diff_minus by (intro vanishes_add vanishes_minus X Y) huffman@36795: huffman@36795: lemma vanishes_mult_bounded: huffman@36795: assumes X: "\a>0. \n. \X n\ < a" huffman@36795: assumes Y: "vanishes (\n. Y n)" huffman@36795: shows "vanishes (\n. X n * Y n)" huffman@36795: proof (rule vanishesI) huffman@36795: fix r :: rat assume r: "0 < r" huffman@36795: obtain a where a: "0 < a" "\n. \X n\ < a" huffman@36795: using X by fast huffman@36795: obtain b where b: "0 < b" "r = a * b" huffman@36795: proof huffman@36795: show "0 < r / a" using r a by (simp add: divide_pos_pos) huffman@36795: show "r = a * (r / a)" using a by simp huffman@36795: qed huffman@36795: obtain k where k: "\n\k. \Y n\ < b" huffman@36795: using vanishesD [OF Y b(1)] .. huffman@36795: have "\n\k. \X n * Y n\ < r" huffman@36795: by (simp add: b(2) abs_mult mult_strict_mono' a k) huffman@36795: thus "\k. \n\k. \X n * Y n\ < r" .. huffman@36795: qed huffman@36795: huffman@36795: subsection {* Cauchy sequences *} paulson@5588: wenzelm@19765: definition haftmann@44278: cauchy :: "(nat \ rat) \ bool" huffman@36795: where huffman@36795: "cauchy X \ (\r>0. \k. \m\k. \n\k. \X m - X n\ < r)" huffman@36795: huffman@36795: lemma cauchyI: huffman@36795: "(\r. 0 < r \ \k. \m\k. \n\k. \X m - X n\ < r) \ cauchy X" huffman@36795: unfolding cauchy_def by simp huffman@36795: huffman@36795: lemma cauchyD: huffman@36795: "\cauchy X; 0 < r\ \ \k. \m\k. \n\k. \X m - X n\ < r" huffman@36795: unfolding cauchy_def by simp huffman@36795: huffman@36795: lemma cauchy_const [simp]: "cauchy (\n. x)" huffman@36795: unfolding cauchy_def by simp huffman@36795: huffman@36795: lemma cauchy_add [simp]: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "cauchy (\n. X n + Y n)" huffman@36795: proof (rule cauchyI) huffman@36795: fix r :: rat assume "0 < r" huffman@36795: then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" huffman@36795: by (rule obtain_pos_sum) huffman@36795: obtain i where i: "\m\i. \n\i. \X m - X n\ < s" huffman@36795: using cauchyD [OF X s] .. huffman@36795: obtain j where j: "\m\j. \n\j. \Y m - Y n\ < t" huffman@36795: using cauchyD [OF Y t] .. huffman@36795: have "\m\max i j. \n\max i j. \(X m + Y m) - (X n + Y n)\ < r" huffman@36795: proof (clarsimp) huffman@36795: fix m n assume *: "i \ m" "j \ m" "i \ n" "j \ n" huffman@36795: have "\(X m + Y m) - (X n + Y n)\ \ \X m - X n\ + \Y m - Y n\" huffman@36795: unfolding add_diff_add by (rule abs_triangle_ineq) huffman@36795: also have "\ < s + t" huffman@36795: by (rule add_strict_mono, simp_all add: i j *) huffman@36795: finally show "\(X m + Y m) - (X n + Y n)\ < r" unfolding r . huffman@36795: qed huffman@36795: thus "\k. \m\k. \n\k. \(X m + Y m) - (X n + Y n)\ < r" .. huffman@36795: qed huffman@36795: huffman@36795: lemma cauchy_minus [simp]: huffman@36795: assumes X: "cauchy X" huffman@36795: shows "cauchy (\n. - X n)" huffman@36795: using assms unfolding cauchy_def huffman@36795: unfolding minus_diff_minus abs_minus_cancel . huffman@36795: huffman@36795: lemma cauchy_diff [simp]: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "cauchy (\n. X n - Y n)" huffman@36795: using assms unfolding diff_minus by simp huffman@36795: huffman@36795: lemma cauchy_imp_bounded: huffman@36795: assumes "cauchy X" shows "\b>0. \n. \X n\ < b" huffman@36795: proof - huffman@36795: obtain k where k: "\m\k. \n\k. \X m - X n\ < 1" huffman@36795: using cauchyD [OF assms zero_less_one] .. huffman@36795: show "\b>0. \n. \X n\ < b" huffman@36795: proof (intro exI conjI allI) huffman@36795: have "0 \ \X 0\" by simp huffman@36795: also have "\X 0\ \ Max (abs ` X ` {..k})" by simp huffman@36795: finally have "0 \ Max (abs ` X ` {..k})" . huffman@36795: thus "0 < Max (abs ` X ` {..k}) + 1" by simp huffman@36795: next huffman@36795: fix n :: nat huffman@36795: show "\X n\ < Max (abs ` X ` {..k}) + 1" huffman@36795: proof (rule linorder_le_cases) huffman@36795: assume "n \ k" huffman@36795: hence "\X n\ \ Max (abs ` X ` {..k})" by simp huffman@36795: thus "\X n\ < Max (abs ` X ` {..k}) + 1" by simp huffman@36795: next huffman@36795: assume "k \ n" huffman@36795: have "\X n\ = \X k + (X n - X k)\" by simp huffman@36795: also have "\X k + (X n - X k)\ \ \X k\ + \X n - X k\" huffman@36795: by (rule abs_triangle_ineq) huffman@36795: also have "\ < Max (abs ` X ` {..k}) + 1" huffman@36795: by (rule add_le_less_mono, simp, simp add: k `k \ n`) huffman@36795: finally show "\X n\ < Max (abs ` X ` {..k}) + 1" . huffman@36795: qed huffman@36795: qed huffman@36795: qed huffman@36795: huffman@36795: lemma cauchy_mult [simp]: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "cauchy (\n. X n * Y n)" huffman@36795: proof (rule cauchyI) huffman@36795: fix r :: rat assume "0 < r" huffman@36795: then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v" huffman@36795: by (rule obtain_pos_sum) huffman@36795: obtain a where a: "0 < a" "\n. \X n\ < a" huffman@36795: using cauchy_imp_bounded [OF X] by fast huffman@36795: obtain b where b: "0 < b" "\n. \Y n\ < b" huffman@36795: using cauchy_imp_bounded [OF Y] by fast huffman@36795: obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b" huffman@36795: proof huffman@36795: show "0 < v/b" using v b(1) by (rule divide_pos_pos) huffman@36795: show "0 < u/a" using u a(1) by (rule divide_pos_pos) huffman@36795: show "r = a * (u/a) + (v/b) * b" huffman@36795: using a(1) b(1) `r = u + v` by simp huffman@36795: qed huffman@36795: obtain i where i: "\m\i. \n\i. \X m - X n\ < s" huffman@36795: using cauchyD [OF X s] .. huffman@36795: obtain j where j: "\m\j. \n\j. \Y m - Y n\ < t" huffman@36795: using cauchyD [OF Y t] .. huffman@36795: have "\m\max i j. \n\max i j. \X m * Y m - X n * Y n\ < r" huffman@36795: proof (clarsimp) huffman@36795: fix m n assume *: "i \ m" "j \ m" "i \ n" "j \ n" huffman@36795: have "\X m * Y m - X n * Y n\ = \X m * (Y m - Y n) + (X m - X n) * Y n\" huffman@36795: unfolding mult_diff_mult .. huffman@36795: also have "\ \ \X m * (Y m - Y n)\ + \(X m - X n) * Y n\" huffman@36795: by (rule abs_triangle_ineq) huffman@36795: also have "\ = \X m\ * \Y m - Y n\ + \X m - X n\ * \Y n\" huffman@36795: unfolding abs_mult .. huffman@36795: also have "\ < a * t + s * b" huffman@36795: by (simp_all add: add_strict_mono mult_strict_mono' a b i j *) huffman@36795: finally show "\X m * Y m - X n * Y n\ < r" unfolding r . huffman@36795: qed huffman@36795: thus "\k. \m\k. \n\k. \X m * Y m - X n * Y n\ < r" .. huffman@36795: qed huffman@36795: huffman@36795: lemma cauchy_not_vanishes_cases: huffman@36795: assumes X: "cauchy X" huffman@36795: assumes nz: "\ vanishes X" huffman@36795: shows "\b>0. \k. (\n\k. b < - X n) \ (\n\k. b < X n)" huffman@36795: proof - huffman@36795: obtain r where "0 < r" and r: "\k. \n\k. r \ \X n\" huffman@36795: using nz unfolding vanishes_def by (auto simp add: not_less) huffman@36795: obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t" huffman@36795: using `0 < r` by (rule obtain_pos_sum) huffman@36795: obtain i where i: "\m\i. \n\i. \X m - X n\ < s" huffman@36795: using cauchyD [OF X s] .. huffman@36795: obtain k where "i \ k" and "r \ \X k\" huffman@36795: using r by fast huffman@36795: have k: "\n\k. \X n - X k\ < s" huffman@36795: using i `i \ k` by auto huffman@36795: have "X k \ - r \ r \ X k" huffman@36795: using `r \ \X k\` by auto huffman@36795: hence "(\n\k. t < - X n) \ (\n\k. t < X n)" huffman@36795: unfolding `r = s + t` using k by auto huffman@36795: hence "\k. (\n\k. t < - X n) \ (\n\k. t < X n)" .. huffman@36795: thus "\t>0. \k. (\n\k. t < - X n) \ (\n\k. t < X n)" huffman@36795: using t by auto huffman@36795: qed huffman@36795: huffman@36795: lemma cauchy_not_vanishes: huffman@36795: assumes X: "cauchy X" huffman@36795: assumes nz: "\ vanishes X" huffman@36795: shows "\b>0. \k. \n\k. b < \X n\" huffman@36795: using cauchy_not_vanishes_cases [OF assms] huffman@36795: by clarify (rule exI, erule conjI, rule_tac x=k in exI, auto) huffman@36795: huffman@36795: lemma cauchy_inverse [simp]: huffman@36795: assumes X: "cauchy X" huffman@36795: assumes nz: "\ vanishes X" huffman@36795: shows "cauchy (\n. inverse (X n))" huffman@36795: proof (rule cauchyI) huffman@36795: fix r :: rat assume "0 < r" huffman@36795: obtain b i where b: "0 < b" and i: "\n\i. b < \X n\" huffman@36795: using cauchy_not_vanishes [OF X nz] by fast huffman@36795: from b i have nz: "\n\i. X n \ 0" by auto huffman@36795: obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b" huffman@36795: proof huffman@36795: show "0 < b * r * b" huffman@36795: by (simp add: `0 < r` b mult_pos_pos) huffman@36795: show "r = inverse b * (b * r * b) * inverse b" huffman@36795: using b by simp huffman@36795: qed huffman@36795: obtain j where j: "\m\j. \n\j. \X m - X n\ < s" huffman@36795: using cauchyD [OF X s] .. huffman@36795: have "\m\max i j. \n\max i j. \inverse (X m) - inverse (X n)\ < r" huffman@36795: proof (clarsimp) huffman@36795: fix m n assume *: "i \ m" "j \ m" "i \ n" "j \ n" huffman@36795: have "\inverse (X m) - inverse (X n)\ = huffman@36795: inverse \X m\ * \X m - X n\ * inverse \X n\" huffman@36795: by (simp add: inverse_diff_inverse nz * abs_mult) huffman@36795: also have "\ < inverse b * s * inverse b" huffman@36795: by (simp add: mult_strict_mono less_imp_inverse_less huffman@36795: mult_pos_pos i j b * s) huffman@36795: finally show "\inverse (X m) - inverse (X n)\ < r" unfolding r . huffman@36795: qed huffman@36795: thus "\k. \m\k. \n\k. \inverse (X m) - inverse (X n)\ < r" .. huffman@36795: qed huffman@36795: huffman@47901: lemma vanishes_diff_inverse: huffman@47901: assumes X: "cauchy X" "\ vanishes X" huffman@47901: assumes Y: "cauchy Y" "\ vanishes Y" huffman@47901: assumes XY: "vanishes (\n. X n - Y n)" huffman@47901: shows "vanishes (\n. inverse (X n) - inverse (Y n))" huffman@47901: proof (rule vanishesI) huffman@47901: fix r :: rat assume r: "0 < r" huffman@47901: obtain a i where a: "0 < a" and i: "\n\i. a < \X n\" huffman@47901: using cauchy_not_vanishes [OF X] by fast huffman@47901: obtain b j where b: "0 < b" and j: "\n\j. b < \Y n\" huffman@47901: using cauchy_not_vanishes [OF Y] by fast huffman@47901: obtain s where s: "0 < s" and "inverse a * s * inverse b = r" huffman@47901: proof huffman@47901: show "0 < a * r * b" huffman@47901: using a r b by (simp add: mult_pos_pos) huffman@47901: show "inverse a * (a * r * b) * inverse b = r" huffman@47901: using a r b by simp huffman@47901: qed huffman@47901: obtain k where k: "\n\k. \X n - Y n\ < s" huffman@47901: using vanishesD [OF XY s] .. huffman@47901: have "\n\max (max i j) k. \inverse (X n) - inverse (Y n)\ < r" huffman@47901: proof (clarsimp) huffman@47901: fix n assume n: "i \ n" "j \ n" "k \ n" huffman@47901: have "X n \ 0" and "Y n \ 0" huffman@47901: using i j a b n by auto huffman@47901: hence "\inverse (X n) - inverse (Y n)\ = huffman@47901: inverse \X n\ * \X n - Y n\ * inverse \Y n\" huffman@47901: by (simp add: inverse_diff_inverse abs_mult) huffman@47901: also have "\ < inverse a * s * inverse b" huffman@47901: apply (intro mult_strict_mono' less_imp_inverse_less) huffman@47901: apply (simp_all add: a b i j k n mult_nonneg_nonneg) huffman@47901: done huffman@47901: also note `inverse a * s * inverse b = r` huffman@47901: finally show "\inverse (X n) - inverse (Y n)\ < r" . huffman@47901: qed huffman@47901: thus "\k. \n\k. \inverse (X n) - inverse (Y n)\ < r" .. huffman@47901: qed huffman@47901: huffman@36795: subsection {* Equivalence relation on Cauchy sequences *} huffman@36795: huffman@47902: definition realrel :: "(nat \ rat) \ (nat \ rat) \ bool" huffman@47902: where "realrel = (\X Y. cauchy X \ cauchy Y \ vanishes (\n. X n - Y n))" huffman@36795: huffman@47902: lemma realrelI [intro?]: huffman@47902: assumes "cauchy X" and "cauchy Y" and "vanishes (\n. X n - Y n)" huffman@47902: shows "realrel X Y" huffman@47902: using assms unfolding realrel_def by simp huffman@36795: huffman@47902: lemma realrel_refl: "cauchy X \ realrel X X" huffman@47902: unfolding realrel_def by simp paulson@14484: huffman@47902: lemma symp_realrel: "symp realrel" huffman@36795: unfolding realrel_def huffman@47902: by (rule sympI, clarify, drule vanishes_minus, simp) huffman@47902: huffman@47902: lemma transp_realrel: "transp realrel" huffman@47902: unfolding realrel_def huffman@47902: apply (rule transpI, clarify) huffman@36795: apply (drule (1) vanishes_add) huffman@36795: apply (simp add: algebra_simps) huffman@36795: done huffman@36795: huffman@47902: lemma part_equivp_realrel: "part_equivp realrel" huffman@47902: by (fast intro: part_equivpI symp_realrel transp_realrel huffman@47902: realrel_refl cauchy_const) huffman@36795: huffman@36795: subsection {* The field of real numbers *} huffman@36795: huffman@47902: quotient_type real = "nat \ rat" / partial: realrel huffman@47902: morphisms rep_real Real huffman@47902: by (rule part_equivp_realrel) huffman@36795: huffman@47902: lemma cr_real_eq: "cr_real = (\x y. cauchy x \ Real x = y)" huffman@47902: unfolding cr_real_def realrel_def by simp huffman@36795: huffman@47902: lemma Real_induct [induct type: real]: (* TODO: generate automatically *) huffman@47902: assumes "\X. cauchy X \ P (Real X)" shows "P x" huffman@47902: proof (induct x) huffman@47902: case (1 X) huffman@47902: hence "cauchy X" by (simp add: realrel_def) huffman@47902: thus "P (Real X)" by (rule assms) huffman@47902: qed huffman@36795: huffman@36795: lemma eq_Real: huffman@36795: "cauchy X \ cauchy Y \ Real X = Real Y \ vanishes (\n. X n - Y n)" huffman@47902: using real.rel_eq_transfer huffman@47902: unfolding cr_real_def fun_rel_def realrel_def by simp huffman@47902: huffman@47902: declare real.forall_transfer [transfer_rule del] huffman@36795: huffman@47902: lemma forall_real_transfer [transfer_rule]: (* TODO: generate automatically *) huffman@47902: "(fun_rel (fun_rel cr_real op =) op =) huffman@47902: (transfer_bforall cauchy) transfer_forall" huffman@47902: using Quotient_forall_transfer [OF Quotient_real] huffman@47902: by (simp add: realrel_def) huffman@47902: huffman@47902: instantiation real :: field_inverse_zero huffman@47902: begin huffman@47902: huffman@47902: lift_definition zero_real :: "real" is "\n. 0" huffman@47902: by (simp add: realrel_refl) huffman@36795: huffman@47902: lift_definition one_real :: "real" is "\n. 1" huffman@47902: by (simp add: realrel_refl) huffman@47902: huffman@47902: lift_definition plus_real :: "real \ real \ real" is "\X Y n. X n + Y n" huffman@47902: unfolding realrel_def add_diff_add huffman@47902: by (simp only: cauchy_add vanishes_add simp_thms) huffman@36795: huffman@47902: lift_definition uminus_real :: "real \ real" is "\X n. - X n" huffman@47902: unfolding realrel_def minus_diff_minus huffman@47902: by (simp only: cauchy_minus vanishes_minus simp_thms) huffman@36795: huffman@47902: lift_definition times_real :: "real \ real \ real" is "\X Y n. X n * Y n" huffman@47902: unfolding realrel_def mult_diff_mult huffman@47902: by (subst (4) mult_commute, simp only: cauchy_mult vanishes_add huffman@47902: vanishes_mult_bounded cauchy_imp_bounded simp_thms) huffman@47902: huffman@47902: lift_definition inverse_real :: "real \ real" huffman@47902: is "\X. if vanishes X then (\n. 0) else (\n. inverse (X n))" huffman@47902: proof - huffman@47902: fix X Y assume "realrel X Y" huffman@36795: hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\n. X n - Y n)" huffman@36795: unfolding realrel_def by simp_all huffman@36795: have "vanishes X \ vanishes Y" huffman@36795: proof huffman@36795: assume "vanishes X" huffman@36795: from vanishes_diff [OF this XY] show "vanishes Y" by simp huffman@36795: next huffman@36795: assume "vanishes Y" huffman@36795: from vanishes_add [OF this XY] show "vanishes X" by simp huffman@36795: qed huffman@47902: thus "?thesis X Y" huffman@47902: unfolding realrel_def huffman@47902: by (simp add: vanishes_diff_inverse X Y XY) huffman@36795: qed huffman@36795: huffman@36795: definition huffman@36795: "x - y = (x::real) + - y" bauerg@10606: haftmann@25571: definition huffman@36795: "x / y = (x::real) * inverse y" huffman@36795: huffman@36795: lemma add_Real: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "Real X + Real Y = Real (\n. X n + Y n)" huffman@47902: using assms plus_real.transfer huffman@47902: unfolding cr_real_eq fun_rel_def by simp huffman@36795: huffman@36795: lemma minus_Real: huffman@36795: assumes X: "cauchy X" huffman@36795: shows "- Real X = Real (\n. - X n)" huffman@47902: using assms uminus_real.transfer huffman@47902: unfolding cr_real_eq fun_rel_def by simp paulson@5588: huffman@36795: lemma diff_Real: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "Real X - Real Y = Real (\n. X n - Y n)" huffman@36795: unfolding minus_real_def diff_minus huffman@36795: by (simp add: minus_Real add_Real X Y) haftmann@25571: huffman@36795: lemma mult_Real: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "Real X * Real Y = Real (\n. X n * Y n)" huffman@47902: using assms times_real.transfer huffman@47902: unfolding cr_real_eq fun_rel_def by simp huffman@36795: huffman@36795: lemma inverse_Real: huffman@36795: assumes X: "cauchy X" huffman@36795: shows "inverse (Real X) = huffman@36795: (if vanishes X then 0 else Real (\n. inverse (X n)))" huffman@47902: using assms inverse_real.transfer zero_real.transfer huffman@47902: unfolding cr_real_eq fun_rel_def by (simp split: split_if_asm, metis) paulson@14269: huffman@36795: instance proof huffman@36795: fix a b c :: real huffman@36795: show "a + b = b + a" huffman@47902: by transfer (simp add: add_ac realrel_def) huffman@36795: show "(a + b) + c = a + (b + c)" huffman@47902: by transfer (simp add: add_ac realrel_def) huffman@36795: show "0 + a = a" huffman@47902: by transfer (simp add: realrel_def) huffman@36795: show "- a + a = 0" huffman@47902: by transfer (simp add: realrel_def) huffman@36795: show "a - b = a + - b" huffman@36795: by (rule minus_real_def) huffman@36795: show "(a * b) * c = a * (b * c)" huffman@47902: by transfer (simp add: mult_ac realrel_def) huffman@36795: show "a * b = b * a" huffman@47902: by transfer (simp add: mult_ac realrel_def) huffman@36795: show "1 * a = a" huffman@47902: by transfer (simp add: mult_ac realrel_def) huffman@36795: show "(a + b) * c = a * c + b * c" huffman@47902: by transfer (simp add: left_distrib realrel_def) huffman@36795: show "(0\real) \ (1\real)" huffman@47902: by transfer (simp add: realrel_def) huffman@36795: show "a \ 0 \ inverse a * a = 1" huffman@47902: apply transfer huffman@47902: apply (simp add: realrel_def) huffman@36795: apply (rule vanishesI) huffman@36795: apply (frule (1) cauchy_not_vanishes, clarify) huffman@36795: apply (rule_tac x=k in exI, clarify) huffman@36795: apply (drule_tac x=n in spec, simp) huffman@36795: done huffman@36795: show "a / b = a * inverse b" huffman@36795: by (rule divide_real_def) huffman@36795: show "inverse (0::real) = 0" huffman@47902: by transfer (simp add: realrel_def) huffman@36795: qed haftmann@25571: haftmann@25571: end paulson@14334: huffman@36795: subsection {* Positive reals *} paulson@14269: huffman@47902: lift_definition positive :: "real \ bool" huffman@47902: is "\X. \r>0. \k. \n\k. r < X n" huffman@47902: proof - huffman@47902: { fix X Y huffman@47902: assume "realrel X Y" huffman@47902: hence XY: "vanishes (\n. X n - Y n)" huffman@47902: unfolding realrel_def by simp_all huffman@47902: assume "\r>0. \k. \n\k. r < X n" huffman@47902: then obtain r i where "0 < r" and i: "\n\i. r < X n" huffman@47902: by fast huffman@47902: obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" huffman@47902: using `0 < r` by (rule obtain_pos_sum) huffman@47902: obtain j where j: "\n\j. \X n - Y n\ < s" huffman@47902: using vanishesD [OF XY s] .. huffman@47902: have "\n\max i j. t < Y n" huffman@47902: proof (clarsimp) huffman@47902: fix n assume n: "i \ n" "j \ n" huffman@47902: have "\X n - Y n\ < s" and "r < X n" huffman@47902: using i j n by simp_all huffman@47902: thus "t < Y n" unfolding r by simp huffman@47902: qed huffman@47902: hence "\r>0. \k. \n\k. r < Y n" using t by fast huffman@47902: } note 1 = this huffman@47902: fix X Y assume "realrel X Y" huffman@47902: hence "realrel X Y" and "realrel Y X" huffman@47902: using symp_realrel unfolding symp_def by auto huffman@47902: thus "?thesis X Y" huffman@47902: by (safe elim!: 1) paulson@14484: qed paulson@14269: huffman@36795: lemma positive_Real: huffman@36795: assumes X: "cauchy X" huffman@36795: shows "positive (Real X) \ (\r>0. \k. \n\k. r < X n)" huffman@47902: using assms positive.transfer huffman@47902: unfolding cr_real_eq fun_rel_def by simp huffman@23287: huffman@36795: lemma positive_zero: "\ positive 0" huffman@47902: by transfer auto paulson@14269: huffman@36795: lemma positive_add: huffman@36795: "positive x \ positive y \ positive (x + y)" huffman@47902: apply transfer huffman@36795: apply (clarify, rename_tac a b i j) huffman@36795: apply (rule_tac x="a + b" in exI, simp) huffman@36795: apply (rule_tac x="max i j" in exI, clarsimp) huffman@36795: apply (simp add: add_strict_mono) paulson@14269: done paulson@14269: huffman@36795: lemma positive_mult: huffman@36795: "positive x \ positive y \ positive (x * y)" huffman@47902: apply transfer huffman@36795: apply (clarify, rename_tac a b i j) huffman@36795: apply (rule_tac x="a * b" in exI, simp add: mult_pos_pos) huffman@36795: apply (rule_tac x="max i j" in exI, clarsimp) huffman@36795: apply (rule mult_strict_mono, auto) huffman@36795: done huffman@36795: huffman@36795: lemma positive_minus: huffman@36795: "\ positive x \ x \ 0 \ positive (- x)" huffman@47902: apply transfer huffman@47902: apply (simp add: realrel_def) huffman@36795: apply (drule (1) cauchy_not_vanishes_cases, safe, fast, fast) paulson@14269: done paulson@14334: huffman@36795: instantiation real :: linordered_field_inverse_zero huffman@36795: begin paulson@14341: huffman@36795: definition huffman@36795: "x < y \ positive (y - x)" paulson@14341: huffman@36795: definition huffman@36795: "x \ (y::real) \ x < y \ x = y" paulson@14334: huffman@36795: definition huffman@36795: "abs (a::real) = (if a < 0 then - a else a)" paulson@14269: huffman@36795: definition huffman@36795: "sgn (a::real) = (if a = 0 then 0 else if 0 < a then 1 else - 1)" paulson@14269: huffman@36795: instance proof huffman@36795: fix a b c :: real huffman@36795: show "\a\ = (if a < 0 then - a else a)" huffman@36795: by (rule abs_real_def) huffman@36795: show "a < b \ a \ b \ \ b \ a" huffman@36795: unfolding less_eq_real_def less_real_def huffman@36795: by (auto, drule (1) positive_add, simp_all add: positive_zero) huffman@36795: show "a \ a" huffman@36795: unfolding less_eq_real_def by simp huffman@36795: show "a \ b \ b \ c \ a \ c" huffman@36795: unfolding less_eq_real_def less_real_def huffman@36795: by (auto, drule (1) positive_add, simp add: algebra_simps) huffman@36795: show "a \ b \ b \ a \ a = b" huffman@36795: unfolding less_eq_real_def less_real_def huffman@36795: by (auto, drule (1) positive_add, simp add: positive_zero) huffman@36795: show "a \ b \ c + a \ c + b" huffman@47108: unfolding less_eq_real_def less_real_def by (auto simp: diff_minus) (* by auto *) huffman@47108: (* FIXME: Procedure int_combine_numerals: c + b - (c + a) \ b + - a *) huffman@47108: (* Should produce c + b - (c + a) \ b - a *) huffman@36795: show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" huffman@36795: by (rule sgn_real_def) huffman@36795: show "a \ b \ b \ a" huffman@36795: unfolding less_eq_real_def less_real_def huffman@36795: by (auto dest!: positive_minus) huffman@36795: show "a < b \ 0 < c \ c * a < c * b" huffman@36795: unfolding less_real_def huffman@36795: by (drule (1) positive_mult, simp add: algebra_simps) huffman@23288: qed paulson@14378: huffman@36795: end paulson@14334: haftmann@25571: instantiation real :: distrib_lattice haftmann@25571: begin haftmann@25571: haftmann@25571: definition huffman@36795: "(inf :: real \ real \ real) = min" haftmann@25571: haftmann@25571: definition huffman@36795: "(sup :: real \ real \ real) = max" huffman@36795: huffman@36795: instance proof huffman@36795: qed (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1) huffman@36795: huffman@36795: end haftmann@25571: huffman@36795: lemma of_nat_Real: "of_nat x = Real (\n. of_nat x)" huffman@36795: apply (induct x) huffman@36795: apply (simp add: zero_real_def) huffman@36795: apply (simp add: one_real_def add_Real) huffman@36795: done paulson@14378: huffman@36795: lemma of_int_Real: "of_int x = Real (\n. of_int x)" huffman@36795: apply (cases x rule: int_diff_cases) huffman@36795: apply (simp add: of_nat_Real diff_Real) huffman@36795: done paulson@14334: huffman@36795: lemma of_rat_Real: "of_rat x = Real (\n. x)" huffman@36795: apply (induct x) huffman@36795: apply (simp add: Fract_of_int_quotient of_rat_divide) huffman@36795: apply (simp add: of_int_Real divide_inverse) huffman@36795: apply (simp add: inverse_Real mult_Real) huffman@36795: done huffman@36795: huffman@36795: instance real :: archimedean_field paulson@14334: proof huffman@36795: fix x :: real huffman@36795: show "\z. x \ of_int z" huffman@36795: apply (induct x) huffman@36795: apply (frule cauchy_imp_bounded, clarify) huffman@36795: apply (rule_tac x="ceiling b + 1" in exI) huffman@36795: apply (rule less_imp_le) huffman@36795: apply (simp add: of_int_Real less_real_def diff_Real positive_Real) huffman@36795: apply (rule_tac x=1 in exI, simp add: algebra_simps) huffman@36795: apply (rule_tac x=0 in exI, clarsimp) huffman@36795: apply (rule le_less_trans [OF abs_ge_self]) huffman@36795: apply (rule less_le_trans [OF _ le_of_int_ceiling]) huffman@36795: apply simp huffman@36795: done paulson@14334: qed paulson@14334: bulwahn@43732: instantiation real :: floor_ceiling bulwahn@43732: begin bulwahn@43732: bulwahn@43732: definition [code del]: bulwahn@43732: "floor (x::real) = (THE z. of_int z \ x \ x < of_int (z + 1))" bulwahn@43732: bulwahn@43732: instance proof bulwahn@43732: fix x :: real bulwahn@43732: show "of_int (floor x) \ x \ x < of_int (floor x + 1)" bulwahn@43732: unfolding floor_real_def using floor_exists1 by (rule theI') bulwahn@43732: qed bulwahn@43732: bulwahn@43732: end bulwahn@43732: huffman@36795: subsection {* Completeness *} paulson@14365: huffman@36795: lemma not_positive_Real: huffman@36795: assumes X: "cauchy X" huffman@36795: shows "\ positive (Real X) \ (\r>0. \k. \n\k. X n \ r)" huffman@36795: unfolding positive_Real [OF X] huffman@36795: apply (auto, unfold not_less) huffman@36795: apply (erule obtain_pos_sum) huffman@36795: apply (drule_tac x=s in spec, simp) huffman@36795: apply (drule_tac r=t in cauchyD [OF X], clarify) huffman@36795: apply (drule_tac x=k in spec, clarsimp) huffman@36795: apply (rule_tac x=n in exI, clarify, rename_tac m) huffman@36795: apply (drule_tac x=m in spec, simp) huffman@36795: apply (drule_tac x=n in spec, simp) huffman@36795: apply (drule spec, drule (1) mp, clarify, rename_tac i) huffman@36795: apply (rule_tac x="max i k" in exI, simp) huffman@36795: done huffman@36795: huffman@36795: lemma le_Real: huffman@36795: assumes X: "cauchy X" and Y: "cauchy Y" huffman@36795: shows "Real X \ Real Y = (\r>0. \k. \n\k. X n \ Y n + r)" huffman@36795: unfolding not_less [symmetric, where 'a=real] less_real_def huffman@36795: apply (simp add: diff_Real not_positive_Real X Y) huffman@36795: apply (simp add: diff_le_eq add_ac) huffman@36795: done paulson@14365: huffman@36795: lemma le_RealI: huffman@36795: assumes Y: "cauchy Y" huffman@36795: shows "\n. x \ of_rat (Y n) \ x \ Real Y" huffman@36795: proof (induct x) huffman@36795: fix X assume X: "cauchy X" and "\n. Real X \ of_rat (Y n)" huffman@36795: hence le: "\m r. 0 < r \ \k. \n\k. X n \ Y m + r" huffman@36795: by (simp add: of_rat_Real le_Real) huffman@36795: { huffman@36795: fix r :: rat assume "0 < r" huffman@36795: then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" huffman@36795: by (rule obtain_pos_sum) huffman@36795: obtain i where i: "\m\i. \n\i. \Y m - Y n\ < s" huffman@36795: using cauchyD [OF Y s] .. huffman@36795: obtain j where j: "\n\j. X n \ Y i + t" huffman@36795: using le [OF t] .. huffman@36795: have "\n\max i j. X n \ Y n + r" huffman@36795: proof (clarsimp) huffman@36795: fix n assume n: "i \ n" "j \ n" huffman@36795: have "X n \ Y i + t" using n j by simp huffman@36795: moreover have "\Y i - Y n\ < s" using n i by simp huffman@36795: ultimately show "X n \ Y n + r" unfolding r by simp huffman@36795: qed huffman@36795: hence "\k. \n\k. X n \ Y n + r" .. huffman@36795: } huffman@36795: thus "Real X \ Real Y" huffman@36795: by (simp add: of_rat_Real le_Real X Y) huffman@36795: qed paulson@14365: huffman@36795: lemma Real_leI: huffman@36795: assumes X: "cauchy X" huffman@36795: assumes le: "\n. of_rat (X n) \ y" huffman@36795: shows "Real X \ y" huffman@36795: proof - huffman@36795: have "- y \ - Real X" huffman@36795: by (simp add: minus_Real X le_RealI of_rat_minus le) huffman@36795: thus ?thesis by simp huffman@36795: qed huffman@36795: huffman@36795: lemma less_RealD: huffman@36795: assumes Y: "cauchy Y" huffman@36795: shows "x < Real Y \ \n. x < of_rat (Y n)" huffman@36795: by (erule contrapos_pp, simp add: not_less, erule Real_leI [OF Y]) huffman@36795: huffman@36795: lemma of_nat_less_two_power: huffman@47108: "of_nat n < (2::'a::linordered_idom) ^ n" huffman@36795: apply (induct n) huffman@36795: apply simp huffman@36795: apply (subgoal_tac "(1::'a) \ 2 ^ n") huffman@36795: apply (drule (1) add_le_less_mono, simp) huffman@36795: apply simp paulson@14365: done paulson@14365: huffman@36795: lemma complete_real: huffman@36795: fixes S :: "real set" huffman@36795: assumes "\x. x \ S" and "\z. \x\S. x \ z" huffman@36795: shows "\y. (\x\S. x \ y) \ (\z. (\x\S. x \ z) \ y \ z)" huffman@36795: proof - huffman@36795: obtain x where x: "x \ S" using assms(1) .. huffman@36795: obtain z where z: "\x\S. x \ z" using assms(2) .. paulson@14365: huffman@36795: def P \ "\x. \y\S. y \ of_rat x" huffman@36795: obtain a where a: "\ P a" huffman@36795: proof huffman@36795: have "of_int (floor (x - 1)) \ x - 1" by (rule of_int_floor_le) huffman@36795: also have "x - 1 < x" by simp huffman@36795: finally have "of_int (floor (x - 1)) < x" . huffman@36795: hence "\ x \ of_int (floor (x - 1))" by (simp only: not_le) huffman@36795: then show "\ P (of_int (floor (x - 1)))" huffman@36795: unfolding P_def of_rat_of_int_eq using x by fast huffman@36795: qed huffman@36795: obtain b where b: "P b" huffman@36795: proof huffman@36795: show "P (of_int (ceiling z))" huffman@36795: unfolding P_def of_rat_of_int_eq huffman@36795: proof huffman@36795: fix y assume "y \ S" huffman@36795: hence "y \ z" using z by simp huffman@36795: also have "z \ of_int (ceiling z)" by (rule le_of_int_ceiling) huffman@36795: finally show "y \ of_int (ceiling z)" . huffman@36795: qed huffman@36795: qed paulson@14365: huffman@36795: def avg \ "\x y :: rat. x/2 + y/2" huffman@36795: def bisect \ "\(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y)" huffman@36795: def A \ "\n. fst ((bisect ^^ n) (a, b))" huffman@36795: def B \ "\n. snd ((bisect ^^ n) (a, b))" huffman@36795: def C \ "\n. avg (A n) (B n)" huffman@36795: have A_0 [simp]: "A 0 = a" unfolding A_def by simp huffman@36795: have B_0 [simp]: "B 0 = b" unfolding B_def by simp huffman@36795: have A_Suc [simp]: "\n. A (Suc n) = (if P (C n) then A n else C n)" huffman@36795: unfolding A_def B_def C_def bisect_def split_def by simp huffman@36795: have B_Suc [simp]: "\n. B (Suc n) = (if P (C n) then C n else B n)" huffman@36795: unfolding A_def B_def C_def bisect_def split_def by simp paulson@14365: huffman@36795: have width: "\n. B n - A n = (b - a) / 2^n" huffman@36795: apply (simp add: eq_divide_eq) huffman@36795: apply (induct_tac n, simp) huffman@36795: apply (simp add: C_def avg_def algebra_simps) huffman@36795: done huffman@36795: huffman@36795: have twos: "\y r :: rat. 0 < r \ \n. y / 2 ^ n < r" huffman@36795: apply (simp add: divide_less_eq) huffman@36795: apply (subst mult_commute) huffman@36795: apply (frule_tac y=y in ex_less_of_nat_mult) huffman@36795: apply clarify huffman@36795: apply (rule_tac x=n in exI) huffman@36795: apply (erule less_trans) huffman@36795: apply (rule mult_strict_right_mono) huffman@36795: apply (rule le_less_trans [OF _ of_nat_less_two_power]) huffman@36795: apply simp huffman@36795: apply assumption huffman@36795: done paulson@14365: huffman@36795: have PA: "\n. \ P (A n)" huffman@36795: by (induct_tac n, simp_all add: a) huffman@36795: have PB: "\n. P (B n)" huffman@36795: by (induct_tac n, simp_all add: b) huffman@36795: have ab: "a < b" huffman@36795: using a b unfolding P_def huffman@36795: apply (clarsimp simp add: not_le) huffman@36795: apply (drule (1) bspec) huffman@36795: apply (drule (1) less_le_trans) huffman@36795: apply (simp add: of_rat_less) huffman@36795: done huffman@36795: have AB: "\n. A n < B n" huffman@36795: by (induct_tac n, simp add: ab, simp add: C_def avg_def) huffman@36795: have A_mono: "\i j. i \ j \ A i \ A j" huffman@36795: apply (auto simp add: le_less [where 'a=nat]) huffman@36795: apply (erule less_Suc_induct) huffman@36795: apply (clarsimp simp add: C_def avg_def) huffman@36795: apply (simp add: add_divide_distrib [symmetric]) huffman@36795: apply (rule AB [THEN less_imp_le]) huffman@36795: apply simp huffman@36795: done huffman@36795: have B_mono: "\i j. i \ j \ B j \ B i" huffman@36795: apply (auto simp add: le_less [where 'a=nat]) huffman@36795: apply (erule less_Suc_induct) huffman@36795: apply (clarsimp simp add: C_def avg_def) huffman@36795: apply (simp add: add_divide_distrib [symmetric]) huffman@36795: apply (rule AB [THEN less_imp_le]) huffman@36795: apply simp huffman@36795: done huffman@36795: have cauchy_lemma: huffman@36795: "\X. \n. \i\n. A n \ X i \ X i \ B n \ cauchy X" huffman@36795: apply (rule cauchyI) huffman@36795: apply (drule twos [where y="b - a"]) huffman@36795: apply (erule exE) huffman@36795: apply (rule_tac x=n in exI, clarify, rename_tac i j) huffman@36795: apply (rule_tac y="B n - A n" in le_less_trans) defer huffman@36795: apply (simp add: width) huffman@36795: apply (drule_tac x=n in spec) huffman@36795: apply (frule_tac x=i in spec, drule (1) mp) huffman@36795: apply (frule_tac x=j in spec, drule (1) mp) huffman@36795: apply (frule A_mono, drule B_mono) huffman@36795: apply (frule A_mono, drule B_mono) huffman@36795: apply arith huffman@36795: done huffman@36795: have "cauchy A" huffman@36795: apply (rule cauchy_lemma [rule_format]) huffman@36795: apply (simp add: A_mono) huffman@36795: apply (erule order_trans [OF less_imp_le [OF AB] B_mono]) huffman@36795: done huffman@36795: have "cauchy B" huffman@36795: apply (rule cauchy_lemma [rule_format]) huffman@36795: apply (simp add: B_mono) huffman@36795: apply (erule order_trans [OF A_mono less_imp_le [OF AB]]) huffman@36795: done huffman@36795: have 1: "\x\S. x \ Real B" huffman@36795: proof huffman@36795: fix x assume "x \ S" huffman@36795: then show "x \ Real B" huffman@36795: using PB [unfolded P_def] `cauchy B` huffman@36795: by (simp add: le_RealI) huffman@36795: qed huffman@36795: have 2: "\z. (\x\S. x \ z) \ Real A \ z" huffman@36795: apply clarify huffman@36795: apply (erule contrapos_pp) huffman@36795: apply (simp add: not_le) huffman@36795: apply (drule less_RealD [OF `cauchy A`], clarify) huffman@36795: apply (subgoal_tac "\ P (A n)") huffman@36795: apply (simp add: P_def not_le, clarify) huffman@36795: apply (erule rev_bexI) huffman@36795: apply (erule (1) less_trans) huffman@36795: apply (simp add: PA) huffman@36795: done huffman@36795: have "vanishes (\n. (b - a) / 2 ^ n)" huffman@36795: proof (rule vanishesI) huffman@36795: fix r :: rat assume "0 < r" huffman@36795: then obtain k where k: "\b - a\ / 2 ^ k < r" huffman@36795: using twos by fast huffman@36795: have "\n\k. \(b - a) / 2 ^ n\ < r" huffman@36795: proof (clarify) huffman@36795: fix n assume n: "k \ n" huffman@36795: have "\(b - a) / 2 ^ n\ = \b - a\ / 2 ^ n" huffman@36795: by simp huffman@36795: also have "\ \ \b - a\ / 2 ^ k" huffman@36795: using n by (simp add: divide_left_mono mult_pos_pos) huffman@36795: also note k huffman@36795: finally show "\(b - a) / 2 ^ n\ < r" . huffman@36795: qed huffman@36795: thus "\k. \n\k. \(b - a) / 2 ^ n\ < r" .. huffman@36795: qed huffman@36795: hence 3: "Real B = Real A" huffman@36795: by (simp add: eq_Real `cauchy A` `cauchy B` width) huffman@36795: show "\y. (\x\S. x \ y) \ (\z. (\x\S. x \ z) \ y \ z)" huffman@36795: using 1 2 3 by (rule_tac x="Real B" in exI, simp) paulson@14484: qed paulson@14365: huffman@36795: subsection {* Hiding implementation details *} paulson@14365: huffman@47902: hide_const (open) vanishes cauchy positive Real paulson@14365: huffman@36795: declare Real_induct [induct del] huffman@36795: declare Abs_real_induct [induct del] huffman@36795: declare Abs_real_cases [cases del] huffman@36795: huffman@47902: lemmas [transfer_rule del] = huffman@47902: real.All_transfer real.Ex_transfer real.rel_eq_transfer forall_real_transfer huffman@47902: zero_real.transfer one_real.transfer plus_real.transfer uminus_real.transfer huffman@47902: times_real.transfer inverse_real.transfer positive.transfer huffman@47902: paulson@14334: subsection{*More Lemmas*} paulson@14334: huffman@36776: text {* BH: These lemmas should not be necessary; they should be huffman@36776: covered by existing simp rules and simplification procedures. *} huffman@36776: paulson@14334: lemma real_mult_left_cancel: "(c::real) \ 0 ==> (c*a=c*b) = (a=b)" huffman@36776: by simp (* redundant with mult_cancel_left *) paulson@14334: paulson@14334: lemma real_mult_right_cancel: "(c::real) \ 0 ==> (a*c=b*c) = (a=b)" huffman@36776: by simp (* redundant with mult_cancel_right *) paulson@14334: paulson@14334: lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)" huffman@36776: by simp (* solved by linordered_ring_less_cancel_factor simproc *) paulson@14334: paulson@14334: lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \ y*z) = (x\y)" huffman@36776: by simp (* solved by linordered_ring_le_cancel_factor simproc *) paulson@14334: paulson@14334: lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \ z*y) = (x\y)" huffman@47428: by simp (* solved by linordered_ring_le_cancel_factor simproc *) paulson@14334: paulson@14334: haftmann@24198: subsection {* Embedding numbers into the Reals *} haftmann@24198: haftmann@24198: abbreviation haftmann@24198: real_of_nat :: "nat \ real" haftmann@24198: where haftmann@24198: "real_of_nat \ of_nat" haftmann@24198: haftmann@24198: abbreviation haftmann@24198: real_of_int :: "int \ real" haftmann@24198: where haftmann@24198: "real_of_int \ of_int" haftmann@24198: haftmann@24198: abbreviation haftmann@24198: real_of_rat :: "rat \ real" haftmann@24198: where haftmann@24198: "real_of_rat \ of_rat" haftmann@24198: haftmann@24198: consts haftmann@24198: (*overloaded constant for injecting other types into "real"*) haftmann@24198: real :: "'a => real" paulson@14365: paulson@14378: defs (overloaded) haftmann@31998: real_of_nat_def [code_unfold]: "real == real_of_nat" haftmann@31998: real_of_int_def [code_unfold]: "real == real_of_int" paulson@14365: wenzelm@40939: declare [[coercion_enabled]] nipkow@40864: declare [[coercion "real::nat\real"]] nipkow@40864: declare [[coercion "real::int\real"]] nipkow@41022: declare [[coercion "int"]] nipkow@40864: hoelzl@41024: declare [[coercion_map map]] noschinl@42112: declare [[coercion_map "% f g h x. g (h (f x))"]] hoelzl@41024: declare [[coercion_map "% f g (x,y) . (f x, g y)"]] hoelzl@41024: avigad@16819: lemma real_eq_of_nat: "real = of_nat" haftmann@24198: unfolding real_of_nat_def .. avigad@16819: avigad@16819: lemma real_eq_of_int: "real = of_int" haftmann@24198: unfolding real_of_int_def .. avigad@16819: paulson@14365: lemma real_of_int_zero [simp]: "real (0::int) = 0" paulson@14378: by (simp add: real_of_int_def) paulson@14365: paulson@14365: lemma real_of_one [simp]: "real (1::int) = (1::real)" paulson@14378: by (simp add: real_of_int_def) paulson@14334: avigad@16819: lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y" paulson@14378: by (simp add: real_of_int_def) paulson@14365: avigad@16819: lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)" paulson@14378: by (simp add: real_of_int_def) avigad@16819: avigad@16819: lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y" avigad@16819: by (simp add: real_of_int_def) paulson@14365: avigad@16819: lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y" paulson@14378: by (simp add: real_of_int_def) paulson@14334: huffman@35344: lemma real_of_int_power [simp]: "real (x ^ n) = real (x::int) ^ n" huffman@35344: by (simp add: real_of_int_def of_int_power) huffman@35344: huffman@35344: lemmas power_real_of_int = real_of_int_power [symmetric] huffman@35344: avigad@16819: lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))" avigad@16819: apply (subst real_eq_of_int)+ avigad@16819: apply (rule of_int_setsum) avigad@16819: done avigad@16819: avigad@16819: lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) = avigad@16819: (PROD x:A. real(f x))" avigad@16819: apply (subst real_eq_of_int)+ avigad@16819: apply (rule of_int_setprod) avigad@16819: done paulson@14365: chaieb@27668: lemma real_of_int_zero_cancel [simp, algebra, presburger]: "(real x = 0) = (x = (0::int))" paulson@14378: by (simp add: real_of_int_def) paulson@14365: chaieb@27668: lemma real_of_int_inject [iff, algebra, presburger]: "(real (x::int) = real y) = (x = y)" paulson@14378: by (simp add: real_of_int_def) paulson@14365: chaieb@27668: lemma real_of_int_less_iff [iff, presburger]: "(real (x::int) < real y) = (x < y)" paulson@14378: by (simp add: real_of_int_def) paulson@14365: chaieb@27668: lemma real_of_int_le_iff [simp, presburger]: "(real (x::int) \ real y) = (x \ y)" paulson@14378: by (simp add: real_of_int_def) paulson@14365: chaieb@27668: lemma real_of_int_gt_zero_cancel_iff [simp, presburger]: "(0 < real (n::int)) = (0 < n)" avigad@16819: by (simp add: real_of_int_def) avigad@16819: chaieb@27668: lemma real_of_int_ge_zero_cancel_iff [simp, presburger]: "(0 <= real (n::int)) = (0 <= n)" avigad@16819: by (simp add: real_of_int_def) avigad@16819: chaieb@27668: lemma real_of_int_lt_zero_cancel_iff [simp, presburger]: "(real (n::int) < 0) = (n < 0)" avigad@16819: by (simp add: real_of_int_def) avigad@16819: chaieb@27668: lemma real_of_int_le_zero_cancel_iff [simp, presburger]: "(real (n::int) <= 0) = (n <= 0)" avigad@16819: by (simp add: real_of_int_def) avigad@16819: hoelzl@47597: lemma one_less_real_of_int_cancel_iff: "1 < real (i :: int) \ 1 < i" hoelzl@47597: unfolding real_of_one[symmetric] real_of_int_less_iff .. hoelzl@47597: hoelzl@47597: lemma one_le_real_of_int_cancel_iff: "1 \ real (i :: int) \ 1 \ i" hoelzl@47597: unfolding real_of_one[symmetric] real_of_int_le_iff .. hoelzl@47597: hoelzl@47597: lemma real_of_int_less_one_cancel_iff: "real (i :: int) < 1 \ i < 1" hoelzl@47597: unfolding real_of_one[symmetric] real_of_int_less_iff .. hoelzl@47597: hoelzl@47597: lemma real_of_int_le_one_cancel_iff: "real (i :: int) \ 1 \ i \ 1" hoelzl@47597: unfolding real_of_one[symmetric] real_of_int_le_iff .. hoelzl@47597: avigad@16888: lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))" avigad@16888: by (auto simp add: abs_if) avigad@16888: avigad@16819: lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)" avigad@16819: apply (subgoal_tac "real n + 1 = real (n + 1)") avigad@16819: apply (simp del: real_of_int_add) avigad@16819: apply auto avigad@16819: done avigad@16819: avigad@16819: lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)" avigad@16819: apply (subgoal_tac "real m + 1 = real (m + 1)") avigad@16819: apply (simp del: real_of_int_add) avigad@16819: apply simp avigad@16819: done avigad@16819: bulwahn@46670: lemma real_of_int_div_aux: "(real (x::int)) / (real d) = avigad@16819: real (x div d) + (real (x mod d)) / (real d)" avigad@16819: proof - avigad@16819: have "x = (x div d) * d + x mod d" avigad@16819: by auto avigad@16819: then have "real x = real (x div d) * real d + real(x mod d)" avigad@16819: by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym]) avigad@16819: then have "real x / real d = ... / real d" avigad@16819: by simp avigad@16819: then show ?thesis bulwahn@46670: by (auto simp add: add_divide_distrib algebra_simps) avigad@16819: qed avigad@16819: bulwahn@46670: lemma real_of_int_div: "(d :: int) dvd n ==> avigad@16819: real(n div d) = real n / real d" bulwahn@46670: apply (subst real_of_int_div_aux) avigad@16819: apply simp nipkow@30042: apply (simp add: dvd_eq_mod_eq_0) avigad@16819: done avigad@16819: avigad@16819: lemma real_of_int_div2: avigad@16819: "0 <= real (n::int) / real (x) - real (n div x)" avigad@16819: apply (case_tac "x = 0") avigad@16819: apply simp avigad@16819: apply (case_tac "0 < x") nipkow@29667: apply (simp add: algebra_simps) avigad@16819: apply (subst real_of_int_div_aux) avigad@16819: apply simp avigad@16819: apply (subst zero_le_divide_iff) avigad@16819: apply auto nipkow@29667: apply (simp add: algebra_simps) avigad@16819: apply (subst real_of_int_div_aux) avigad@16819: apply simp avigad@16819: apply (subst zero_le_divide_iff) avigad@16819: apply auto avigad@16819: done avigad@16819: avigad@16819: lemma real_of_int_div3: avigad@16819: "real (n::int) / real (x) - real (n div x) <= 1" nipkow@29667: apply (simp add: algebra_simps) avigad@16819: apply (subst real_of_int_div_aux) bulwahn@46670: apply (auto simp add: divide_le_eq intro: order_less_imp_le) avigad@16819: done avigad@16819: avigad@16819: lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x" nipkow@27964: by (insert real_of_int_div2 [of n x], simp) nipkow@27964: huffman@35635: lemma Ints_real_of_int [simp]: "real (x::int) \ Ints" huffman@35635: unfolding real_of_int_def by (rule Ints_of_int) huffman@35635: nipkow@27964: paulson@14365: subsection{*Embedding the Naturals into the Reals*} paulson@14365: paulson@14334: lemma real_of_nat_zero [simp]: "real (0::nat) = 0" paulson@14365: by (simp add: real_of_nat_def) paulson@14334: huffman@30082: lemma real_of_nat_1 [simp]: "real (1::nat) = 1" huffman@30082: by (simp add: real_of_nat_def) huffman@30082: paulson@14334: lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)" paulson@14365: by (simp add: real_of_nat_def) paulson@14334: paulson@14365: lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n" paulson@14378: by (simp add: real_of_nat_def) paulson@14334: paulson@14334: (*Not for addsimps: often the LHS is used to represent a positive natural*) paulson@14334: lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)" paulson@14378: by (simp add: real_of_nat_def) paulson@14334: paulson@14334: lemma real_of_nat_less_iff [iff]: paulson@14334: "(real (n::nat) < real m) = (n < m)" paulson@14365: by (simp add: real_of_nat_def) paulson@14334: paulson@14334: lemma real_of_nat_le_iff [iff]: "(real (n::nat) \ real m) = (n \ m)" paulson@14378: by (simp add: real_of_nat_def) paulson@14334: paulson@14334: lemma real_of_nat_ge_zero [iff]: "0 \ real (n::nat)" huffman@47489: by (simp add: real_of_nat_def) paulson@14334: paulson@14365: lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)" paulson@14378: by (simp add: real_of_nat_def del: of_nat_Suc) paulson@14365: paulson@14334: lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n" huffman@23431: by (simp add: real_of_nat_def of_nat_mult) paulson@14334: huffman@35344: lemma real_of_nat_power [simp]: "real (m ^ n) = real (m::nat) ^ n" huffman@35344: by (simp add: real_of_nat_def of_nat_power) huffman@35344: huffman@35344: lemmas power_real_of_nat = real_of_nat_power [symmetric] huffman@35344: avigad@16819: lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) = avigad@16819: (SUM x:A. real(f x))" avigad@16819: apply (subst real_eq_of_nat)+ avigad@16819: apply (rule of_nat_setsum) avigad@16819: done avigad@16819: avigad@16819: lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) = avigad@16819: (PROD x:A. real(f x))" avigad@16819: apply (subst real_eq_of_nat)+ avigad@16819: apply (rule of_nat_setprod) avigad@16819: done avigad@16819: avigad@16819: lemma real_of_card: "real (card A) = setsum (%x.1) A" avigad@16819: apply (subst card_eq_setsum) avigad@16819: apply (subst real_of_nat_setsum) avigad@16819: apply simp avigad@16819: done avigad@16819: paulson@14334: lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)" paulson@14378: by (simp add: real_of_nat_def) paulson@14334: paulson@14387: lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)" paulson@14378: by (simp add: real_of_nat_def) paulson@14334: paulson@14365: lemma real_of_nat_diff: "n \ m ==> real (m - n) = real (m::nat) - real n" huffman@23438: by (simp add: add: real_of_nat_def of_nat_diff) paulson@14334: nipkow@25162: lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)" nipkow@25140: by (auto simp: real_of_nat_def) paulson@14365: paulson@14365: lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \ 0) = (n = 0)" paulson@14378: by (simp add: add: real_of_nat_def) paulson@14334: paulson@14365: lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0" paulson@14378: by (simp add: add: real_of_nat_def) paulson@14334: avigad@16819: lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)" avigad@16819: apply (subgoal_tac "real n + 1 = real (Suc n)") avigad@16819: apply simp avigad@16819: apply (auto simp add: real_of_nat_Suc) avigad@16819: done avigad@16819: avigad@16819: lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)" avigad@16819: apply (subgoal_tac "real m + 1 = real (Suc m)") avigad@16819: apply (simp add: less_Suc_eq_le) avigad@16819: apply (simp add: real_of_nat_Suc) avigad@16819: done avigad@16819: bulwahn@46670: lemma real_of_nat_div_aux: "(real (x::nat)) / (real d) = avigad@16819: real (x div d) + (real (x mod d)) / (real d)" avigad@16819: proof - avigad@16819: have "x = (x div d) * d + x mod d" avigad@16819: by auto avigad@16819: then have "real x = real (x div d) * real d + real(x mod d)" avigad@16819: by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym]) avigad@16819: then have "real x / real d = \ / real d" avigad@16819: by simp avigad@16819: then show ?thesis bulwahn@46670: by (auto simp add: add_divide_distrib algebra_simps) avigad@16819: qed avigad@16819: bulwahn@46670: lemma real_of_nat_div: "(d :: nat) dvd n ==> avigad@16819: real(n div d) = real n / real d" bulwahn@46670: by (subst real_of_nat_div_aux) bulwahn@46670: (auto simp add: dvd_eq_mod_eq_0 [symmetric]) avigad@16819: avigad@16819: lemma real_of_nat_div2: avigad@16819: "0 <= real (n::nat) / real (x) - real (n div x)" nipkow@29667: apply (simp add: algebra_simps) nipkow@25134: apply (subst real_of_nat_div_aux) nipkow@25134: apply simp nipkow@25134: apply (subst zero_le_divide_iff) nipkow@25134: apply simp avigad@16819: done avigad@16819: avigad@16819: lemma real_of_nat_div3: avigad@16819: "real (n::nat) / real (x) - real (n div x) <= 1" nipkow@25134: apply(case_tac "x = 0") nipkow@25134: apply (simp) nipkow@29667: apply (simp add: algebra_simps) nipkow@25134: apply (subst real_of_nat_div_aux) nipkow@25134: apply simp avigad@16819: done avigad@16819: avigad@16819: lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x" nipkow@29667: by (insert real_of_nat_div2 [of n x], simp) avigad@16819: paulson@14426: lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n" paulson@14426: by (simp add: real_of_int_def real_of_nat_def) paulson@14334: avigad@16819: lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x" avigad@16819: apply (subgoal_tac "real(int(nat x)) = real(nat x)") avigad@16819: apply force huffman@44822: apply (simp only: real_of_int_of_nat_eq) avigad@16819: done paulson@14387: huffman@35635: lemma Nats_real_of_nat [simp]: "real (n::nat) \ Nats" huffman@35635: unfolding real_of_nat_def by (rule of_nat_in_Nats) huffman@35635: huffman@35635: lemma Ints_real_of_nat [simp]: "real (n::nat) \ Ints" huffman@35635: unfolding real_of_nat_def by (rule Ints_of_nat) huffman@35635: nipkow@28001: nipkow@28001: subsection{* Rationals *} nipkow@28001: nipkow@28091: lemma Rats_real_nat[simp]: "real(n::nat) \ \" nipkow@28091: by (simp add: real_eq_of_nat) nipkow@28091: nipkow@28091: nipkow@28001: lemma Rats_eq_int_div_int: nipkow@28091: "\ = { real(i::int)/real(j::int) |i j. j \ 0}" (is "_ = ?S") nipkow@28001: proof nipkow@28091: show "\ \ ?S" nipkow@28001: proof nipkow@28091: fix x::real assume "x : \" nipkow@28001: then obtain r where "x = of_rat r" unfolding Rats_def .. nipkow@28001: have "of_rat r : ?S" nipkow@28001: by (cases r)(auto simp add:of_rat_rat real_eq_of_int) nipkow@28001: thus "x : ?S" using `x = of_rat r` by simp nipkow@28001: qed nipkow@28001: next nipkow@28091: show "?S \ \" nipkow@28001: proof(auto simp:Rats_def) nipkow@28001: fix i j :: int assume "j \ 0" nipkow@28001: hence "real i / real j = of_rat(Fract i j)" nipkow@28001: by (simp add:of_rat_rat real_eq_of_int) nipkow@28001: thus "real i / real j \ range of_rat" by blast nipkow@28001: qed nipkow@28001: qed nipkow@28001: nipkow@28001: lemma Rats_eq_int_div_nat: nipkow@28091: "\ = { real(i::int)/real(n::nat) |i n. n \ 0}" nipkow@28001: proof(auto simp:Rats_eq_int_div_int) nipkow@28001: fix i j::int assume "j \ 0" nipkow@28001: show "EX (i'::int) (n::nat). real i/real j = real i'/real n \ 00" nipkow@28001: hence "real i/real j = real i/real(nat j) \ 00" nipkow@28001: hence "real i/real j = real(-i)/real(nat(-j)) \ 00` nipkow@28001: by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat) nipkow@28001: thus ?thesis by blast nipkow@28001: qed nipkow@28001: next nipkow@28001: fix i::int and n::nat assume "0 < n" nipkow@28001: hence "real i/real n = real i/real(int n) \ int n \ 0" by simp nipkow@28001: thus "\(i'::int) j::int. real i/real n = real i'/real j \ j \ 0" by blast nipkow@28001: qed nipkow@28001: nipkow@28001: lemma Rats_abs_nat_div_natE: nipkow@28001: assumes "x \ \" huffman@31706: obtains m n :: nat huffman@31706: where "n \ 0" and "\x\ = real m / real n" and "gcd m n = 1" nipkow@28001: proof - nipkow@28001: from `x \ \` obtain i::int and n::nat where "n \ 0" and "x = real i / real n" nipkow@28001: by(auto simp add: Rats_eq_int_div_nat) nipkow@28001: hence "\x\ = real(nat(abs i)) / real n" by simp nipkow@28001: then obtain m :: nat where x_rat: "\x\ = real m / real n" by blast nipkow@28001: let ?gcd = "gcd m n" huffman@31706: from `n\0` have gcd: "?gcd \ 0" by simp nipkow@28001: let ?k = "m div ?gcd" nipkow@28001: let ?l = "n div ?gcd" nipkow@28001: let ?gcd' = "gcd ?k ?l" nipkow@28001: have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m" nipkow@28001: by (rule dvd_mult_div_cancel) nipkow@28001: have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n" nipkow@28001: by (rule dvd_mult_div_cancel) nipkow@28001: from `n\0` and gcd_l have "?l \ 0" by (auto iff del: neq0_conv) nipkow@28001: moreover nipkow@28001: have "\x\ = real ?k / real ?l" nipkow@28001: proof - nipkow@28001: from gcd have "real ?k / real ?l = nipkow@28001: real (?gcd * ?k) / real (?gcd * ?l)" by simp nipkow@28001: also from gcd_k and gcd_l have "\ = real m / real n" by simp nipkow@28001: also from x_rat have "\ = \x\" .. nipkow@28001: finally show ?thesis .. nipkow@28001: qed nipkow@28001: moreover nipkow@28001: have "?gcd' = 1" nipkow@28001: proof - nipkow@28001: have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)" nipkow@31952: by (rule gcd_mult_distrib_nat) nipkow@28001: with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp huffman@31706: with gcd show ?thesis by auto nipkow@28001: qed nipkow@28001: ultimately show ?thesis .. nipkow@28001: qed nipkow@28001: nipkow@28001: paulson@14387: subsection{*Numerals and Arithmetic*} paulson@14387: haftmann@46028: lemma [code_abbrev]: huffman@47108: "real_of_int (numeral k) = numeral k" huffman@47108: "real_of_int (neg_numeral k) = neg_numeral k" huffman@47108: by simp_all paulson@14387: paulson@14387: text{*Collapse applications of @{term real} to @{term number_of}*} huffman@47108: lemma real_numeral [simp]: huffman@47108: "real (numeral v :: int) = numeral v" huffman@47108: "real (neg_numeral v :: int) = neg_numeral v" huffman@47108: by (simp_all add: real_of_int_def) paulson@14387: huffman@47108: lemma real_of_nat_numeral [simp]: huffman@47108: "real (numeral v :: nat) = numeral v" huffman@47108: by (simp add: real_of_nat_def) paulson@14387: haftmann@31100: declaration {* haftmann@31100: K (Lin_Arith.add_inj_thms [@{thm real_of_nat_le_iff} RS iffD2, @{thm real_of_nat_inject} RS iffD2] haftmann@31100: (* not needed because x < (y::nat) can be rewritten as Suc x <= y: real_of_nat_less_iff RS iffD2 *) haftmann@31100: #> Lin_Arith.add_inj_thms [@{thm real_of_int_le_iff} RS iffD2, @{thm real_of_int_inject} RS iffD2] haftmann@31100: (* not needed because x < (y::int) can be rewritten as x + 1 <= y: real_of_int_less_iff RS iffD2 *) haftmann@31100: #> Lin_Arith.add_simps [@{thm real_of_nat_zero}, @{thm real_of_nat_Suc}, @{thm real_of_nat_add}, haftmann@31100: @{thm real_of_nat_mult}, @{thm real_of_int_zero}, @{thm real_of_one}, haftmann@31100: @{thm real_of_int_add}, @{thm real_of_int_minus}, @{thm real_of_int_diff}, haftmann@31100: @{thm real_of_int_mult}, @{thm real_of_int_of_nat_eq}, huffman@47108: @{thm real_of_nat_numeral}, @{thm real_numeral(1)}, @{thm real_numeral(2)}] huffman@36795: #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "nat \ real"}) huffman@36795: #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "int \ real"})) haftmann@31100: *} paulson@14387: kleing@19023: paulson@14387: subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*} paulson@14387: paulson@14387: lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" paulson@14387: by arith paulson@14387: huffman@36839: text {* FIXME: redundant with @{text add_eq_0_iff} below *} paulson@15085: lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)" paulson@14387: by auto paulson@14387: paulson@15085: lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)" paulson@14387: by auto paulson@14387: paulson@15085: lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)" paulson@14387: by auto paulson@14387: paulson@15085: lemma real_add_le_0_iff: "(x+y \ (0::real)) = (y \ -x)" paulson@14387: by auto paulson@14387: paulson@15085: lemma real_0_le_add_iff: "((0::real) \ x+y) = (-x \ y)" paulson@14387: by auto paulson@14387: huffman@36839: subsection {* Lemmas about powers *} paulson@14387: huffman@36839: text {* FIXME: declare this in Rings.thy or not at all *} huffman@36839: declare abs_mult_self [simp] huffman@36839: huffman@36839: (* used by Import/HOL/real.imp *) huffman@36839: lemma two_realpow_ge_one: "(1::real) \ 2 ^ n" huffman@36839: by simp huffman@36839: huffman@36839: lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n" huffman@36839: apply (induct "n") huffman@36839: apply (auto simp add: real_of_nat_Suc) huffman@36839: apply (subst mult_2) huffman@36839: apply (erule add_less_le_mono) huffman@36839: apply (rule two_realpow_ge_one) huffman@36839: done huffman@36839: huffman@36839: text {* TODO: no longer real-specific; rename and move elsewhere *} huffman@36839: lemma realpow_Suc_le_self: huffman@36839: fixes r :: "'a::linordered_semidom" huffman@36839: shows "[| 0 \ r; r \ 1 |] ==> r ^ Suc n \ r" huffman@36839: by (insert power_decreasing [of 1 "Suc n" r], simp) huffman@36839: huffman@36839: text {* TODO: no longer real-specific; rename and move elsewhere *} huffman@36839: lemma realpow_minus_mult: huffman@36839: fixes x :: "'a::monoid_mult" huffman@36839: shows "0 < n \ x ^ (n - 1) * x = x ^ n" huffman@36839: by (simp add: power_commutes split add: nat_diff_split) huffman@36839: huffman@36839: text {* FIXME: declare this [simp] for all types, or not at all *} huffman@36839: lemma real_two_squares_add_zero_iff [simp]: huffman@36839: "(x * x + y * y = 0) = ((x::real) = 0 \ y = 0)" huffman@36839: by (rule sum_squares_eq_zero_iff) huffman@36839: huffman@36839: text {* FIXME: declare this [simp] for all types, or not at all *} huffman@36839: lemma realpow_two_sum_zero_iff [simp]: huffman@36839: "(x ^ 2 + y ^ 2 = (0::real)) = (x = 0 & y = 0)" huffman@36839: by (rule sum_power2_eq_zero_iff) huffman@36839: huffman@36839: lemma real_minus_mult_self_le [simp]: "-(u * u) \ (x * (x::real))" huffman@36839: by (rule_tac y = 0 in order_trans, auto) huffman@36839: huffman@36839: lemma realpow_square_minus_le [simp]: "-(u ^ 2) \ (x::real) ^ 2" huffman@36839: by (auto simp add: power2_eq_square) huffman@36839: huffman@36839: hoelzl@47598: lemma numeral_power_le_real_of_nat_cancel_iff[simp]: hoelzl@47598: "(numeral x::real) ^ n \ real a \ (numeral x::nat) ^ n \ a" hoelzl@47598: unfolding real_of_nat_le_iff[symmetric] by simp hoelzl@47598: hoelzl@47598: lemma real_of_nat_le_numeral_power_cancel_iff[simp]: hoelzl@47598: "real a \ (numeral x::real) ^ n \ a \ (numeral x::nat) ^ n" hoelzl@47598: unfolding real_of_nat_le_iff[symmetric] by simp hoelzl@47598: hoelzl@47598: lemma numeral_power_le_real_of_int_cancel_iff[simp]: hoelzl@47598: "(numeral x::real) ^ n \ real a \ (numeral x::int) ^ n \ a" hoelzl@47598: unfolding real_of_int_le_iff[symmetric] by simp hoelzl@47598: hoelzl@47598: lemma real_of_int_le_numeral_power_cancel_iff[simp]: hoelzl@47598: "real a \ (numeral x::real) ^ n \ a \ (numeral x::int) ^ n" hoelzl@47598: unfolding real_of_int_le_iff[symmetric] by simp hoelzl@47598: hoelzl@47598: lemma neg_numeral_power_le_real_of_int_cancel_iff[simp]: hoelzl@47598: "(neg_numeral x::real) ^ n \ real a \ (neg_numeral x::int) ^ n \ a" hoelzl@47598: unfolding real_of_int_le_iff[symmetric] by simp hoelzl@47598: hoelzl@47598: lemma real_of_int_le_neg_numeral_power_cancel_iff[simp]: hoelzl@47598: "real a \ (neg_numeral x::real) ^ n \ a \ (neg_numeral x::int) ^ n" hoelzl@47598: unfolding real_of_int_le_iff[symmetric] by simp hoelzl@47598: huffman@36839: subsection{*Density of the Reals*} paulson@14387: paulson@14387: lemma real_lbound_gt_zero: paulson@14387: "[| (0::real) < d1; 0 < d2 |] ==> \e. 0 < e & e < d1 & e < d2" paulson@14387: apply (rule_tac x = " (min d1 d2) /2" in exI) paulson@14387: apply (simp add: min_def) paulson@14387: done paulson@14387: paulson@14387: haftmann@35050: text{*Similar results are proved in @{text Fields}*} paulson@14387: lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)" paulson@14387: by auto paulson@14387: paulson@14387: lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y" paulson@14387: by auto paulson@14387: paulson@14387: paulson@14387: subsection{*Absolute Value Function for the Reals*} paulson@14387: paulson@14387: lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))" paulson@15003: by (simp add: abs_if) paulson@14387: huffman@23289: (* FIXME: redundant, but used by Integration/RealRandVar.thy in AFP *) paulson@14387: lemma abs_le_interval_iff: "(abs x \ r) = (-r\x & x\(r::real))" haftmann@35050: by (force simp add: abs_le_iff) paulson@14387: huffman@44344: lemma abs_add_one_gt_zero: "(0::real) < 1 + abs(x)" paulson@15003: by (simp add: abs_if) paulson@14387: paulson@14387: lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)" huffman@22958: by (rule abs_of_nonneg [OF real_of_nat_ge_zero]) paulson@14387: huffman@44344: lemma abs_add_one_not_less_self: "~ abs(x) + (1::real) < x" webertj@20217: by simp paulson@14387: paulson@14387: lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \ abs(x + -l) + abs(y + -m)" webertj@20217: by simp paulson@14387: berghofe@24534: haftmann@27544: subsection {* Implementation of rational real numbers *} berghofe@24534: huffman@47108: text {* Formal constructor *} huffman@47108: haftmann@27544: definition Ratreal :: "rat \ real" where huffman@47108: [code_abbrev, simp]: "Ratreal = of_rat" berghofe@24534: haftmann@24623: code_datatype Ratreal berghofe@24534: huffman@47108: huffman@47108: text {* Numerals *} huffman@47108: huffman@47108: lemma [code_abbrev]: huffman@47108: "(of_rat (of_int a) :: real) = of_int a" huffman@47108: by simp huffman@47108: huffman@47108: lemma [code_abbrev]: huffman@47108: "(of_rat 0 :: real) = 0" huffman@47108: by simp huffman@47108: huffman@47108: lemma [code_abbrev]: huffman@47108: "(of_rat 1 :: real) = 1" huffman@47108: by simp huffman@47108: huffman@47108: lemma [code_abbrev]: huffman@47108: "(of_rat (numeral k) :: real) = numeral k" huffman@47108: by simp berghofe@24534: huffman@47108: lemma [code_abbrev]: huffman@47108: "(of_rat (neg_numeral k) :: real) = neg_numeral k" huffman@47108: by simp huffman@47108: huffman@47108: lemma [code_post]: huffman@47108: "(of_rat (0 / r) :: real) = 0" huffman@47108: "(of_rat (r / 0) :: real) = 0" huffman@47108: "(of_rat (1 / 1) :: real) = 1" huffman@47108: "(of_rat (numeral k / 1) :: real) = numeral k" huffman@47108: "(of_rat (neg_numeral k / 1) :: real) = neg_numeral k" huffman@47108: "(of_rat (1 / numeral k) :: real) = 1 / numeral k" huffman@47108: "(of_rat (1 / neg_numeral k) :: real) = 1 / neg_numeral k" huffman@47108: "(of_rat (numeral k / numeral l) :: real) = numeral k / numeral l" huffman@47108: "(of_rat (numeral k / neg_numeral l) :: real) = numeral k / neg_numeral l" huffman@47108: "(of_rat (neg_numeral k / numeral l) :: real) = neg_numeral k / numeral l" huffman@47108: "(of_rat (neg_numeral k / neg_numeral l) :: real) = neg_numeral k / neg_numeral l" huffman@47108: by (simp_all add: of_rat_divide) huffman@47108: huffman@47108: huffman@47108: text {* Operations *} huffman@47108: huffman@47108: lemma zero_real_code [code]: haftmann@27544: "0 = Ratreal 0" haftmann@27544: by simp berghofe@24534: huffman@47108: lemma one_real_code [code]: haftmann@27544: "1 = Ratreal 1" haftmann@27544: by simp haftmann@27544: haftmann@38857: instantiation real :: equal haftmann@26513: begin haftmann@26513: haftmann@38857: definition "HOL.equal (x\real) y \ x - y = 0" haftmann@26513: haftmann@38857: instance proof haftmann@38857: qed (simp add: equal_real_def) berghofe@24534: haftmann@38857: lemma real_equal_code [code]: haftmann@38857: "HOL.equal (Ratreal x) (Ratreal y) \ HOL.equal x y" haftmann@38857: by (simp add: equal_real_def equal) haftmann@26513: haftmann@38857: lemma [code nbe]: haftmann@38857: "HOL.equal (x::real) x \ True" haftmann@38857: by (rule equal_refl) haftmann@28351: haftmann@26513: end berghofe@24534: haftmann@27544: lemma real_less_eq_code [code]: "Ratreal x \ Ratreal y \ x \ y" haftmann@27652: by (simp add: of_rat_less_eq) berghofe@24534: haftmann@27544: lemma real_less_code [code]: "Ratreal x < Ratreal y \ x < y" haftmann@27652: by (simp add: of_rat_less) berghofe@24534: haftmann@27544: lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)" haftmann@27544: by (simp add: of_rat_add) berghofe@24534: haftmann@27544: lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)" haftmann@27544: by (simp add: of_rat_mult) haftmann@27544: haftmann@27544: lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)" haftmann@27544: by (simp add: of_rat_minus) berghofe@24534: haftmann@27544: lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)" haftmann@27544: by (simp add: of_rat_diff) berghofe@24534: haftmann@27544: lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)" haftmann@27544: by (simp add: of_rat_inverse) haftmann@27544: haftmann@27544: lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)" haftmann@27544: by (simp add: of_rat_divide) berghofe@24534: bulwahn@43733: lemma real_floor_code [code]: "floor (Ratreal x) = floor x" bulwahn@43733: by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff of_int_floor_le of_rat_of_int_eq real_less_eq_code) bulwahn@43733: huffman@47108: huffman@47108: text {* Quickcheck *} huffman@47108: haftmann@31203: definition (in term_syntax) haftmann@32657: valterm_ratreal :: "rat \ (unit \ Code_Evaluation.term) \ real \ (unit \ Code_Evaluation.term)" where haftmann@32657: [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\} k" haftmann@31203: haftmann@37751: notation fcomp (infixl "\>" 60) haftmann@37751: notation scomp (infixl "\\" 60) haftmann@31203: haftmann@31203: instantiation real :: random haftmann@31203: begin haftmann@31203: haftmann@31203: definition haftmann@37751: "Quickcheck.random i = Quickcheck.random i \\ (\r. Pair (valterm_ratreal r))" haftmann@31203: haftmann@31203: instance .. haftmann@31203: haftmann@31203: end haftmann@31203: haftmann@37751: no_notation fcomp (infixl "\>" 60) haftmann@37751: no_notation scomp (infixl "\\" 60) haftmann@31203: bulwahn@41920: instantiation real :: exhaustive bulwahn@41231: begin bulwahn@41231: bulwahn@41231: definition bulwahn@45818: "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (%r. f (Ratreal r)) d" bulwahn@42311: bulwahn@42311: instance .. bulwahn@42311: bulwahn@42311: end bulwahn@42311: bulwahn@42311: instantiation real :: full_exhaustive bulwahn@42311: begin bulwahn@42311: bulwahn@42311: definition bulwahn@45818: "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (%r. f (valterm_ratreal r)) d" bulwahn@41231: bulwahn@41231: instance .. bulwahn@41231: bulwahn@41231: end bulwahn@41231: bulwahn@43887: instantiation real :: narrowing bulwahn@43887: begin bulwahn@43887: bulwahn@43887: definition bulwahn@43887: "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing" bulwahn@43887: bulwahn@43887: instance .. bulwahn@43887: bulwahn@43887: end bulwahn@43887: bulwahn@43887: bulwahn@45184: subsection {* Setup for Nitpick *} berghofe@24534: blanchet@38287: declaration {* blanchet@38287: Nitpick_HOL.register_frac_type @{type_name real} wenzelm@33209: [(@{const_name zero_real_inst.zero_real}, @{const_name Nitpick.zero_frac}), wenzelm@33209: (@{const_name one_real_inst.one_real}, @{const_name Nitpick.one_frac}), wenzelm@33209: (@{const_name plus_real_inst.plus_real}, @{const_name Nitpick.plus_frac}), wenzelm@33209: (@{const_name times_real_inst.times_real}, @{const_name Nitpick.times_frac}), wenzelm@33209: (@{const_name uminus_real_inst.uminus_real}, @{const_name Nitpick.uminus_frac}), wenzelm@33209: (@{const_name inverse_real_inst.inverse_real}, @{const_name Nitpick.inverse_frac}), blanchet@45859: (@{const_name ord_real_inst.less_real}, @{const_name Nitpick.less_frac}), wenzelm@33209: (@{const_name ord_real_inst.less_eq_real}, @{const_name Nitpick.less_eq_frac})] blanchet@33197: *} blanchet@33197: huffman@47108: lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real blanchet@37397: ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real blanchet@33197: times_real_inst.times_real uminus_real_inst.uminus_real blanchet@33197: zero_real_inst.zero_real blanchet@33197: paulson@5588: end