clasohm@0: (* Title: tactic clasohm@0: ID: $Id$ clasohm@0: Author: Lawrence C Paulson, Cambridge University Computer Laboratory clasohm@0: Copyright 1991 University of Cambridge clasohm@0: clasohm@0: Tactics clasohm@0: *) clasohm@0: clasohm@0: signature TACTIC = clasohm@0: sig clasohm@0: structure Tactical: TACTICAL and Net: NET clasohm@0: local open Tactical Tactical.Thm Net clasohm@0: in clasohm@0: val ares_tac: thm list -> int -> tactic clasohm@0: val asm_rewrite_goal_tac: nipkow@214: bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic clasohm@0: val assume_tac: int -> tactic clasohm@0: val atac: int ->tactic lcp@670: val bimatch_from_nets_tac: lcp@670: (int*(bool*thm)) net * (int*(bool*thm)) net -> int -> tactic clasohm@0: val bimatch_tac: (bool*thm)list -> int -> tactic lcp@670: val biresolve_from_nets_tac: lcp@670: (int*(bool*thm)) net * (int*(bool*thm)) net -> int -> tactic clasohm@0: val biresolve_tac: (bool*thm)list -> int -> tactic clasohm@0: val build_net: thm list -> (int*thm) net lcp@670: val build_netpair: (int*(bool*thm)) net * (int*(bool*thm)) net -> lcp@670: (bool*thm)list -> (int*(bool*thm)) net * (int*(bool*thm)) net clasohm@0: val compose_inst_tac: (string*string)list -> (bool*thm*int) -> int -> tactic clasohm@0: val compose_tac: (bool * thm * int) -> int -> tactic clasohm@0: val cut_facts_tac: thm list -> int -> tactic lcp@270: val cut_inst_tac: (string*string)list -> thm -> int -> tactic clasohm@0: val dmatch_tac: thm list -> int -> tactic clasohm@0: val dresolve_tac: thm list -> int -> tactic clasohm@0: val dres_inst_tac: (string*string)list -> thm -> int -> tactic clasohm@0: val dtac: thm -> int ->tactic clasohm@0: val etac: thm -> int ->tactic clasohm@0: val eq_assume_tac: int -> tactic clasohm@0: val ematch_tac: thm list -> int -> tactic clasohm@0: val eresolve_tac: thm list -> int -> tactic clasohm@0: val eres_inst_tac: (string*string)list -> thm -> int -> tactic clasohm@0: val filter_thms: (term*term->bool) -> int*term*thm list -> thm list clasohm@0: val filt_resolve_tac: thm list -> int -> int -> tactic clasohm@0: val flexflex_tac: tactic clasohm@0: val fold_goals_tac: thm list -> tactic clasohm@0: val fold_tac: thm list -> tactic clasohm@0: val forward_tac: thm list -> int -> tactic clasohm@0: val forw_inst_tac: (string*string)list -> thm -> int -> tactic clasohm@0: val is_fact: thm -> bool clasohm@0: val lessb: (bool * thm) * (bool * thm) -> bool clasohm@0: val lift_inst_rule: thm * int * (string*string)list * thm -> thm clasohm@0: val make_elim: thm -> thm clasohm@0: val match_from_net_tac: (int*thm) net -> int -> tactic clasohm@0: val match_tac: thm list -> int -> tactic clasohm@0: val metacut_tac: thm -> int -> tactic clasohm@0: val net_bimatch_tac: (bool*thm) list -> int -> tactic clasohm@0: val net_biresolve_tac: (bool*thm) list -> int -> tactic clasohm@0: val net_match_tac: thm list -> int -> tactic clasohm@0: val net_resolve_tac: thm list -> int -> tactic clasohm@0: val PRIMITIVE: (thm -> thm) -> tactic clasohm@0: val PRIMSEQ: (thm -> thm Sequence.seq) -> tactic clasohm@0: val prune_params_tac: tactic clasohm@0: val rename_tac: string -> int -> tactic clasohm@0: val rename_last_tac: string -> string list -> int -> tactic clasohm@0: val resolve_from_net_tac: (int*thm) net -> int -> tactic clasohm@0: val resolve_tac: thm list -> int -> tactic clasohm@0: val res_inst_tac: (string*string)list -> thm -> int -> tactic clasohm@0: val rewrite_goals_tac: thm list -> tactic clasohm@0: val rewrite_tac: thm list -> tactic clasohm@0: val rewtac: thm -> tactic clasohm@0: val rtac: thm -> int -> tactic clasohm@0: val rule_by_tactic: tactic -> thm -> thm lcp@439: val subgoal_tac: string -> int -> tactic lcp@439: val subgoals_tac: string list -> int -> tactic clasohm@0: val subgoals_of_brl: bool * thm -> int clasohm@0: val trace_goalno_tac: (int -> tactic) -> int -> tactic clasohm@0: end clasohm@0: end; clasohm@0: clasohm@0: clasohm@0: functor TacticFun (structure Logic: LOGIC and Drule: DRULE and clasohm@0: Tactical: TACTICAL and Net: NET clasohm@0: sharing Drule.Thm = Tactical.Thm) : TACTIC = clasohm@0: struct clasohm@0: structure Tactical = Tactical; clasohm@0: structure Thm = Tactical.Thm; clasohm@0: structure Net = Net; clasohm@0: structure Sequence = Thm.Sequence; clasohm@0: structure Sign = Thm.Sign; clasohm@0: local open Tactical Tactical.Thm Drule clasohm@0: in clasohm@0: clasohm@0: (*Discover what goal is chosen: SOMEGOAL(trace_goalno_tac tac) *) clasohm@0: fun trace_goalno_tac tf i = Tactic (fn state => clasohm@0: case Sequence.pull(tapply(tf i, state)) of clasohm@0: None => Sequence.null clasohm@0: | seqcell => (prs("Subgoal " ^ string_of_int i ^ " selected\n"); clasohm@0: Sequence.seqof(fn()=> seqcell))); clasohm@0: clasohm@0: fun string_of (a,0) = a clasohm@0: | string_of (a,i) = a ^ "_" ^ string_of_int i; clasohm@0: clasohm@0: (*convert all Vars in a theorem to Frees -- export??*) clasohm@0: fun freeze th = clasohm@0: let val fth = freezeT th clasohm@0: val {prop,sign,...} = rep_thm fth clasohm@0: fun mk_inst (Var(v,T)) = lcp@230: (cterm_of sign (Var(v,T)), lcp@230: cterm_of sign (Free(string_of v, T))) clasohm@0: val insts = map mk_inst (term_vars prop) clasohm@0: in instantiate ([],insts) fth end; clasohm@0: clasohm@0: (*Makes a rule by applying a tactic to an existing rule*) clasohm@0: fun rule_by_tactic (Tactic tf) rl = clasohm@0: case Sequence.pull(tf (freeze (standard rl))) of clasohm@0: None => raise THM("rule_by_tactic", 0, [rl]) clasohm@0: | Some(rl',_) => standard rl'; clasohm@0: clasohm@0: (*** Basic tactics ***) clasohm@0: clasohm@0: (*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*) clasohm@0: fun PRIMSEQ thmfun = Tactic (fn state => thmfun state clasohm@0: handle THM _ => Sequence.null); clasohm@0: clasohm@0: (*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*) clasohm@0: fun PRIMITIVE thmfun = PRIMSEQ (Sequence.single o thmfun); clasohm@0: clasohm@0: (*** The following fail if the goal number is out of range: clasohm@0: thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *) clasohm@0: clasohm@0: (*Solve subgoal i by assumption*) clasohm@0: fun assume_tac i = PRIMSEQ (assumption i); clasohm@0: clasohm@0: (*Solve subgoal i by assumption, using no unification*) clasohm@0: fun eq_assume_tac i = PRIMITIVE (eq_assumption i); clasohm@0: clasohm@0: (** Resolution/matching tactics **) clasohm@0: clasohm@0: (*The composition rule/state: no lifting or var renaming. clasohm@0: The arg = (bires_flg, orule, m) ; see bicompose for explanation.*) clasohm@0: fun compose_tac arg i = PRIMSEQ (bicompose false arg i); clasohm@0: clasohm@0: (*Converts a "destruct" rule like P&Q==>P to an "elimination" rule clasohm@0: like [| P&Q; P==>R |] ==> R *) clasohm@0: fun make_elim rl = zero_var_indexes (rl RS revcut_rl); clasohm@0: clasohm@0: (*Attack subgoal i by resolution, using flags to indicate elimination rules*) clasohm@0: fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i); clasohm@0: clasohm@0: (*Resolution: the simple case, works for introduction rules*) clasohm@0: fun resolve_tac rules = biresolve_tac (map (pair false) rules); clasohm@0: clasohm@0: (*Resolution with elimination rules only*) clasohm@0: fun eresolve_tac rules = biresolve_tac (map (pair true) rules); clasohm@0: clasohm@0: (*Forward reasoning using destruction rules.*) clasohm@0: fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac; clasohm@0: clasohm@0: (*Like forward_tac, but deletes the assumption after use.*) clasohm@0: fun dresolve_tac rls = eresolve_tac (map make_elim rls); clasohm@0: clasohm@0: (*Shorthand versions: for resolution with a single theorem*) clasohm@0: fun rtac rl = resolve_tac [rl]; clasohm@0: fun etac rl = eresolve_tac [rl]; clasohm@0: fun dtac rl = dresolve_tac [rl]; clasohm@0: val atac = assume_tac; clasohm@0: clasohm@0: (*Use an assumption or some rules ... A popular combination!*) clasohm@0: fun ares_tac rules = assume_tac ORELSE' resolve_tac rules; clasohm@0: clasohm@0: (*Matching tactics -- as above, but forbid updating of state*) clasohm@0: fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i); clasohm@0: fun match_tac rules = bimatch_tac (map (pair false) rules); clasohm@0: fun ematch_tac rules = bimatch_tac (map (pair true) rules); clasohm@0: fun dmatch_tac rls = ematch_tac (map make_elim rls); clasohm@0: clasohm@0: (*Smash all flex-flex disagreement pairs in the proof state.*) clasohm@0: val flexflex_tac = PRIMSEQ flexflex_rule; clasohm@0: clasohm@0: (*Lift and instantiate a rule wrt the given state and subgoal number *) clasohm@0: fun lift_inst_rule (state, i, sinsts, rule) = clasohm@0: let val {maxidx,sign,...} = rep_thm state clasohm@0: val (_, _, Bi, _) = dest_state(state,i) clasohm@0: val params = Logic.strip_params Bi (*params of subgoal i*) clasohm@0: val params = rev(rename_wrt_term Bi params) (*as they are printed*) clasohm@0: val paramTs = map #2 params clasohm@0: and inc = maxidx+1 clasohm@0: fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T) clasohm@0: | liftvar t = raise TERM("Variable expected", [t]); clasohm@0: fun liftterm t = list_abs_free (params, clasohm@0: Logic.incr_indexes(paramTs,inc) t) clasohm@0: (*Lifts instantiation pair over params*) lcp@230: fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct) clasohm@0: fun lifttvar((a,i),ctyp) = lcp@230: let val {T,sign} = rep_ctyp ctyp lcp@230: in ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end clasohm@0: val rts = types_sorts rule and (types,sorts) = types_sorts state clasohm@0: fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm) clasohm@0: | types'(ixn) = types ixn; lcp@230: val (Tinsts,insts) = read_insts sign rts (types',sorts) sinsts clasohm@0: in instantiate (map lifttvar Tinsts, map liftpair insts) clasohm@0: (lift_rule (state,i) rule) clasohm@0: end; clasohm@0: clasohm@0: clasohm@0: (*** Resolve after lifting and instantation; may refer to parameters of the clasohm@0: subgoal. Fails if "i" is out of range. ***) clasohm@0: clasohm@0: (*compose version: arguments are as for bicompose.*) clasohm@0: fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i = clasohm@0: STATE ( fn state => clasohm@0: compose_tac (bires_flg, lift_inst_rule (state, i, sinsts, rule), clasohm@0: nsubgoal) i clasohm@0: handle TERM (msg,_) => (writeln msg; no_tac) lcp@191: | THM (msg,_,_) => (writeln msg; no_tac) ); clasohm@0: clasohm@0: (*Resolve version*) clasohm@0: fun res_inst_tac sinsts rule i = clasohm@0: compose_inst_tac sinsts (false, rule, nprems_of rule) i; clasohm@0: clasohm@0: (*eresolve (elimination) version*) clasohm@0: fun eres_inst_tac sinsts rule i = clasohm@0: compose_inst_tac sinsts (true, rule, nprems_of rule) i; clasohm@0: lcp@270: (*For forw_inst_tac and dres_inst_tac. Preserve Var indexes of rl; lcp@270: increment revcut_rl instead.*) clasohm@0: fun make_elim_preserve rl = lcp@270: let val {maxidx,...} = rep_thm rl lcp@270: fun cvar ixn = cterm_of Sign.pure (Var(ixn,propT)); lcp@270: val revcut_rl' = lcp@270: instantiate ([], [(cvar("V",0), cvar("V",maxidx+1)), lcp@270: (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl clasohm@0: val arg = (false, rl, nprems_of rl) clasohm@0: val [th] = Sequence.list_of_s (bicompose false arg 1 revcut_rl') clasohm@0: in th end clasohm@0: handle Bind => raise THM("make_elim_preserve", 1, [rl]); clasohm@0: lcp@270: (*instantiate and cut -- for a FACT, anyway...*) lcp@270: fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule); clasohm@0: lcp@270: (*forward tactic applies a RULE to an assumption without deleting it*) lcp@270: fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac; lcp@270: lcp@270: (*dresolve tactic applies a RULE to replace an assumption*) clasohm@0: fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule); clasohm@0: lcp@270: (*** Applications of cut_rl ***) clasohm@0: clasohm@0: (*Used by metacut_tac*) clasohm@0: fun bires_cut_tac arg i = clasohm@0: resolve_tac [cut_rl] i THEN biresolve_tac arg (i+1) ; clasohm@0: clasohm@0: (*The conclusion of the rule gets assumed in subgoal i, clasohm@0: while subgoal i+1,... are the premises of the rule.*) clasohm@0: fun metacut_tac rule = bires_cut_tac [(false,rule)]; clasohm@0: clasohm@0: (*Recognizes theorems that are not rules, but simple propositions*) clasohm@0: fun is_fact rl = clasohm@0: case prems_of rl of clasohm@0: [] => true | _::_ => false; clasohm@0: clasohm@0: (*"Cut" all facts from theorem list into the goal as assumptions. *) clasohm@0: fun cut_facts_tac ths i = clasohm@0: EVERY (map (fn th => metacut_tac th i) (filter is_fact ths)); clasohm@0: clasohm@0: (*Introduce the given proposition as a lemma and subgoal*) clasohm@0: fun subgoal_tac sprop = res_inst_tac [("psi", sprop)] cut_rl; clasohm@0: lcp@439: (*Introduce a list of lemmas and subgoals*) lcp@439: fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops); lcp@439: clasohm@0: clasohm@0: (**** Indexing and filtering of theorems ****) clasohm@0: clasohm@0: (*Returns the list of potentially resolvable theorems for the goal "prem", clasohm@0: using the predicate could(subgoal,concl). clasohm@0: Resulting list is no longer than "limit"*) clasohm@0: fun filter_thms could (limit, prem, ths) = clasohm@0: let val pb = Logic.strip_assums_concl prem; (*delete assumptions*) clasohm@0: fun filtr (limit, []) = [] clasohm@0: | filtr (limit, th::ths) = clasohm@0: if limit=0 then [] clasohm@0: else if could(pb, concl_of th) then th :: filtr(limit-1, ths) clasohm@0: else filtr(limit,ths) clasohm@0: in filtr(limit,ths) end; clasohm@0: clasohm@0: clasohm@0: (*** biresolution and resolution using nets ***) clasohm@0: clasohm@0: (** To preserve the order of the rules, tag them with increasing integers **) clasohm@0: clasohm@0: (*insert tags*) clasohm@0: fun taglist k [] = [] clasohm@0: | taglist k (x::xs) = (k,x) :: taglist (k+1) xs; clasohm@0: clasohm@0: (*remove tags and suppress duplicates -- list is assumed sorted!*) clasohm@0: fun untaglist [] = [] clasohm@0: | untaglist [(k:int,x)] = [x] clasohm@0: | untaglist ((k,x) :: (rest as (k',x')::_)) = clasohm@0: if k=k' then untaglist rest clasohm@0: else x :: untaglist rest; clasohm@0: clasohm@0: (*return list elements in original order*) clasohm@0: val orderlist = untaglist o sort (fn(x,y)=> #1 x < #1 y); clasohm@0: clasohm@0: (*insert one tagged brl into the pair of nets*) clasohm@0: fun insert_kbrl (kbrl as (k,(eres,th)), (inet,enet)) = clasohm@0: if eres then clasohm@0: case prems_of th of clasohm@0: prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false)) clasohm@0: | [] => error"insert_kbrl: elimination rule with no premises" clasohm@0: else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet); clasohm@0: clasohm@0: (*build a pair of nets for biresolution*) lcp@670: fun build_netpair netpair brls = lcp@670: foldr insert_kbrl (taglist 1 brls, netpair); clasohm@0: clasohm@0: (*biresolution using a pair of nets rather than rules*) clasohm@0: fun biresolution_from_nets_tac match (inet,enet) = clasohm@0: SUBGOAL clasohm@0: (fn (prem,i) => clasohm@0: let val hyps = Logic.strip_assums_hyp prem clasohm@0: and concl = Logic.strip_assums_concl prem clasohm@0: val kbrls = Net.unify_term inet concl @ clasohm@0: flat (map (Net.unify_term enet) hyps) clasohm@0: in PRIMSEQ (biresolution match (orderlist kbrls) i) end); clasohm@0: clasohm@0: (*versions taking pre-built nets*) clasohm@0: val biresolve_from_nets_tac = biresolution_from_nets_tac false; clasohm@0: val bimatch_from_nets_tac = biresolution_from_nets_tac true; clasohm@0: clasohm@0: (*fast versions using nets internally*) lcp@670: val net_biresolve_tac = lcp@670: biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty); lcp@670: lcp@670: val net_bimatch_tac = lcp@670: bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty); clasohm@0: clasohm@0: (*** Simpler version for resolve_tac -- only one net, and no hyps ***) clasohm@0: clasohm@0: (*insert one tagged rl into the net*) clasohm@0: fun insert_krl (krl as (k,th), net) = clasohm@0: Net.insert_term ((concl_of th, krl), net, K false); clasohm@0: clasohm@0: (*build a net of rules for resolution*) clasohm@0: fun build_net rls = clasohm@0: foldr insert_krl (taglist 1 rls, Net.empty); clasohm@0: clasohm@0: (*resolution using a net rather than rules; pred supports filt_resolve_tac*) clasohm@0: fun filt_resolution_from_net_tac match pred net = clasohm@0: SUBGOAL clasohm@0: (fn (prem,i) => clasohm@0: let val krls = Net.unify_term net (Logic.strip_assums_concl prem) clasohm@0: in clasohm@0: if pred krls clasohm@0: then PRIMSEQ clasohm@0: (biresolution match (map (pair false) (orderlist krls)) i) clasohm@0: else no_tac clasohm@0: end); clasohm@0: clasohm@0: (*Resolve the subgoal using the rules (making a net) unless too flexible, clasohm@0: which means more than maxr rules are unifiable. *) clasohm@0: fun filt_resolve_tac rules maxr = clasohm@0: let fun pred krls = length krls <= maxr clasohm@0: in filt_resolution_from_net_tac false pred (build_net rules) end; clasohm@0: clasohm@0: (*versions taking pre-built nets*) clasohm@0: val resolve_from_net_tac = filt_resolution_from_net_tac false (K true); clasohm@0: val match_from_net_tac = filt_resolution_from_net_tac true (K true); clasohm@0: clasohm@0: (*fast versions using nets internally*) clasohm@0: val net_resolve_tac = resolve_from_net_tac o build_net; clasohm@0: val net_match_tac = match_from_net_tac o build_net; clasohm@0: clasohm@0: clasohm@0: (*** For Natural Deduction using (bires_flg, rule) pairs ***) clasohm@0: clasohm@0: (*The number of new subgoals produced by the brule*) clasohm@0: fun subgoals_of_brl (true,rule) = length (prems_of rule) - 1 clasohm@0: | subgoals_of_brl (false,rule) = length (prems_of rule); clasohm@0: clasohm@0: (*Less-than test: for sorting to minimize number of new subgoals*) clasohm@0: fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2; clasohm@0: clasohm@0: clasohm@0: (*** Meta-Rewriting Tactics ***) clasohm@0: clasohm@0: fun result1 tacf mss thm = clasohm@0: case Sequence.pull(tapply(tacf mss,thm)) of clasohm@0: None => None clasohm@0: | Some(thm,_) => Some(thm); clasohm@0: clasohm@0: (*Rewrite subgoal i only *) nipkow@214: fun asm_rewrite_goal_tac mode prover_tac mss i = nipkow@214: PRIMITIVE(rewrite_goal_rule mode (result1 prover_tac) mss i); clasohm@0: lcp@69: (*Rewrite throughout proof state. *) lcp@69: fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs); clasohm@0: clasohm@0: (*Rewrite subgoals only, not main goal. *) lcp@69: fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs); clasohm@0: lcp@69: fun rewtac def = rewrite_goals_tac [def]; clasohm@0: clasohm@0: lcp@69: (*** Tactic for folding definitions, handling critical pairs ***) lcp@69: lcp@69: (*The depth of nesting in a term*) lcp@69: fun term_depth (Abs(a,T,t)) = 1 + term_depth t lcp@69: | term_depth (f$t) = 1 + max [term_depth f, term_depth t] lcp@69: | term_depth _ = 0; lcp@69: lcp@69: val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm; lcp@69: lcp@69: (*folding should handle critical pairs! E.g. K == Inl(0), S == Inr(Inl(0)) lcp@69: Returns longest lhs first to avoid folding its subexpressions.*) lcp@69: fun sort_lhs_depths defs = lcp@69: let val keylist = make_keylist (term_depth o lhs_of_thm) defs lcp@69: val keys = distinct (sort op> (map #2 keylist)) lcp@69: in map (keyfilter keylist) keys end; lcp@69: lcp@69: fun fold_tac defs = EVERY lcp@69: (map rewrite_tac (sort_lhs_depths (map symmetric defs))); lcp@69: lcp@69: fun fold_goals_tac defs = EVERY lcp@69: (map rewrite_goals_tac (sort_lhs_depths (map symmetric defs))); lcp@69: lcp@69: lcp@69: (*** Renaming of parameters in a subgoal lcp@69: Names may contain letters, digits or primes and must be lcp@69: separated by blanks ***) clasohm@0: clasohm@0: (*Calling this will generate the warning "Same as previous level" since clasohm@0: it affects nothing but the names of bound variables!*) clasohm@0: fun rename_tac str i = clasohm@0: let val cs = explode str clasohm@0: in clasohm@0: if !Logic.auto_rename clasohm@0: then (writeln"Note: setting Logic.auto_rename := false"; clasohm@0: Logic.auto_rename := false) clasohm@0: else (); clasohm@0: case #2 (take_prefix (is_letdig orf is_blank) cs) of clasohm@0: [] => PRIMITIVE (rename_params_rule (scanwords is_letdig cs, i)) clasohm@0: | c::_ => error ("Illegal character: " ^ c) clasohm@0: end; clasohm@0: clasohm@0: (*Rename recent parameters using names generated from (a) and the suffixes, clasohm@0: provided the string (a), which represents a term, is an identifier. *) clasohm@0: fun rename_last_tac a sufs i = clasohm@0: let val names = map (curry op^ a) sufs clasohm@0: in if Syntax.is_identifier a clasohm@0: then PRIMITIVE (rename_params_rule (names,i)) clasohm@0: else all_tac clasohm@0: end; clasohm@0: clasohm@0: (*Prunes all redundant parameters from the proof state by rewriting*) clasohm@0: val prune_params_tac = rewrite_tac [triv_forall_equality]; clasohm@0: clasohm@0: end; clasohm@0: end;