diff -r 000000000000 -r a5a9c433f639 src/CCL/CCL.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCL/CCL.thy Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,148 @@ +(* Title: CCL/ccl.thy + ID: $Id$ + Author: Martin Coen + Copyright 1993 University of Cambridge + +Classical Computational Logic for Untyped Lambda Calculus with reduction to +weak head-normal form. + +Based on FOL extended with set collection, a primitive higher-order logic. +HOL is too strong - descriptions prevent a type of programs being defined +which contains only executable terms. +*) + +CCL = Gfp + + +classes prog < term + +default prog + +types i 0 + +arities + i :: prog + fun :: (prog,prog)prog + +consts + (*** Evaluation Judgement ***) + "--->" :: "[i,i]=>prop" (infixl 20) + + (*** Bisimulations for pre-order and equality ***) + "[=" :: "['a,'a]=>o" (infixl 50) + SIM :: "[i,i,i set]=>o" + POgen,EQgen :: "i set => i set" + PO,EQ :: "i set" + + (*** Term Formers ***) + true,false :: "i" + pair :: "[i,i]=>i" ("(1<_,/_>)") + lambda :: "(i=>i)=>i" (binder "lam " 55) + case :: "[i,i,i,[i,i]=>i,(i=>i)=>i]=>i" + "`" :: "[i,i]=>i" (infixl 56) + bot :: "i" + fix :: "(i=>i)=>i" + + (*** Defined Predicates ***) + Trm,Dvg :: "i => o" + +rules + + (******* EVALUATION SEMANTICS *******) + + (** This is the evaluation semantics from which the axioms below were derived. **) + (** It is included here just as an evaluator for FUN and has no influence on **) + (** inference in the theory CCL. **) + + trueV "true ---> true" + falseV "false ---> false" + pairV " ---> " + lamV "lam x.b(x) ---> lam x.b(x)" + caseVtrue "[| t ---> true; d ---> c |] ==> case(t,d,e,f,g) ---> c" + caseVfalse "[| t ---> false; e ---> c |] ==> case(t,d,e,f,g) ---> c" + caseVpair "[| t ---> ; f(a,b) ---> c |] ==> case(t,d,e,f,g) ---> c" + caseVlam "[| t ---> lam x.b(x); g(b) ---> c |] ==> case(t,d,e,f,g) ---> c" + + (*** Properties of evaluation: note that "t ---> c" impies that c is canonical ***) + + canonical "[| t ---> c; c==true ==> u--->v; \ +\ c==false ==> u--->v; \ +\ !!a b.c== ==> u--->v; \ +\ !!f.c==lam x.f(x) ==> u--->v |] ==> \ +\ u--->v" + + (* Should be derivable - but probably a bitch! *) + substitute "[| a==a'; t(a)--->c(a) |] ==> t(a')--->c(a')" + + (************** LOGIC ***************) + + (*** Definitions used in the following rules ***) + + apply_def "f ` t == case(f,bot,bot,%x y.bot,%u.u(t))" + bot_def "bot == (lam x.x`x)`(lam x.x`x)" + fix_def "fix(f) == (lam x.f(x`x))`(lam x.f(x`x))" + + (* The pre-order ([=) is defined as a simulation, and behavioural equivalence (=) *) + (* as a bisimulation. They can both be expressed as (bi)simulations up to *) + (* behavioural equivalence (ie the relations PO and EQ defined below). *) + + SIM_def + "SIM(t,t',R) == (t=true & t'=true) | (t=false & t'=false) | \ +\ (EX a a' b b'.t= & t'= & : R & : R) | \ +\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x. : R))" + + POgen_def "POgen(R) == {p. EX t t'. p= & (t = bot | SIM(t,t',R))}" + EQgen_def "EQgen(R) == {p. EX t t'. p= & (t = bot & t' = bot | SIM(t,t',R))}" + + PO_def "PO == gfp(POgen)" + EQ_def "EQ == gfp(EQgen)" + + (*** Rules ***) + + (** Partial Order **) + + po_refl "a [= a" + po_trans "[| a [= b; b [= c |] ==> a [= c" + po_cong "a [= b ==> f(a) [= f(b)" + + (* Extend definition of [= to program fragments of higher type *) + po_abstractn "(!!x. f(x) [= g(x)) ==> (%x.f(x)) [= (%x.g(x))" + + (** Equality - equivalence axioms inherited from FOL.thy **) + (** - congruence of "=" is axiomatised implicitly **) + + eq_iff "t = t' <-> t [= t' & t' [= t" + + (** Properties of canonical values given by greatest fixed point definitions **) + + PO_iff "t [= t' <-> : PO" + EQ_iff "t = t' <-> : EQ" + + (** Behaviour of non-canonical terms (ie case) given by the following beta-rules **) + + caseBtrue "case(true,d,e,f,g) = d" + caseBfalse "case(false,d,e,f,g) = e" + caseBpair "case(,d,e,f,g) = f(a,b)" + caseBlam "case(lam x.b(x),d,e,f,g) = g(b)" + caseBbot "case(bot,d,e,f,g) = bot" (* strictness *) + + (** The theory is non-trivial **) + distinctness "~ lam x.b(x) = bot" + + (*** Definitions of Termination and Divergence ***) + + Dvg_def "Dvg(t) == t = bot" + Trm_def "Trm(t) == ~ Dvg(t)" + +end + + +(* +Would be interesting to build a similar theory for a typed programming language: + ie. true :: bool, fix :: ('a=>'a)=>'a etc...... + +This is starting to look like LCF. +What are the advantages of this approach? + - less axiomatic + - wfd induction / coinduction and fixed point induction available + +*)