diff -r 000000000000 -r a5a9c433f639 src/CCL/Set.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCL/Set.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,355 @@ +(* Title: set/set + ID: $Id$ + +For set.thy. + +Modified version of + Title: HOL/set + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +For set.thy. Set theory for higher-order logic. A set is simply a predicate. +*) + +open Set; + +val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}"; +by (rtac (mem_Collect_iff RS iffD2) 1); +by (rtac prem 1); +val CollectI = result(); + +val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)"; +by (resolve_tac (prems RL [mem_Collect_iff RS iffD1]) 1); +val CollectD = result(); + +val [prem] = goal Set.thy "[| !!x. x:A <-> x:B |] ==> A = B"; +by (rtac (set_extension RS iffD2) 1); +by (rtac (prem RS allI) 1); +val set_ext = result(); + +val prems = goal Set.thy "[| !!x. P(x) <-> Q(x) |] ==> {x. P(x)} = {x. Q(x)}"; +by (REPEAT (ares_tac [set_ext,iffI,CollectI] 1 ORELSE + eresolve_tac ([CollectD] RL (prems RL [iffD1,iffD2])) 1)); +val Collect_cong = result(); + +val CollectE = make_elim CollectD; + +(*** Bounded quantifiers ***) + +val prems = goalw Set.thy [Ball_def] + "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"; +by (REPEAT (ares_tac (prems @ [allI,impI]) 1)); +val ballI = result(); + +val [major,minor] = goalw Set.thy [Ball_def] + "[| ALL x:A. P(x); x:A |] ==> P(x)"; +by (rtac (minor RS (major RS spec RS mp)) 1); +val bspec = result(); + +val major::prems = goalw Set.thy [Ball_def] + "[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q"; +by (rtac (major RS spec RS impCE) 1); +by (REPEAT (eresolve_tac prems 1)); +val ballE = result(); + +(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*) +fun ball_tac i = etac ballE i THEN contr_tac (i+1); + +val prems = goalw Set.thy [Bex_def] + "[| P(x); x:A |] ==> EX x:A. P(x)"; +by (REPEAT (ares_tac (prems @ [exI,conjI]) 1)); +val bexI = result(); + +val bexCI = prove_goal Set.thy + "[| EX x:A. ~P(x) ==> P(a); a:A |] ==> EX x:A.P(x)" + (fn prems=> + [ (rtac classical 1), + (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]); + +val major::prems = goalw Set.thy [Bex_def] + "[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q"; +by (rtac (major RS exE) 1); +by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)); +val bexE = result(); + +(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*) +val prems = goal Set.thy + "(ALL x:A. True) <-> True"; +by (REPEAT (ares_tac [TrueI,ballI,iffI] 1)); +val ball_rew = result(); + +(** Congruence rules **) + +val prems = goal Set.thy + "[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \ +\ (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))"; +by (resolve_tac (prems RL [ssubst,iffD2]) 1); +by (REPEAT (ares_tac [ballI,iffI] 1 + ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1)); +val ball_cong = result(); + +val prems = goal Set.thy + "[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \ +\ (EX x:A. P(x)) <-> (EX x:A'. P'(x))"; +by (resolve_tac (prems RL [ssubst,iffD2]) 1); +by (REPEAT (etac bexE 1 + ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1)); +val bex_cong = result(); + +(*** Rules for subsets ***) + +val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B"; +by (REPEAT (ares_tac (prems @ [ballI]) 1)); +val subsetI = result(); + +(*Rule in Modus Ponens style*) +val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B"; +by (rtac (major RS bspec) 1); +by (resolve_tac prems 1); +val subsetD = result(); + +(*Classical elimination rule*) +val major::prems = goalw Set.thy [subset_def] + "[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P"; +by (rtac (major RS ballE) 1); +by (REPEAT (eresolve_tac prems 1)); +val subsetCE = result(); + +(*Takes assumptions A<=B; c:A and creates the assumption c:B *) +fun set_mp_tac i = etac subsetCE i THEN mp_tac i; + +val subset_refl = prove_goal Set.thy "A <= A" + (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]); + +goal Set.thy "!!A B C. [| A<=B; B<=C |] ==> A<=C"; +br subsetI 1; +by (REPEAT (eresolve_tac [asm_rl, subsetD] 1)); +val subset_trans = result(); + + +(*** Rules for equality ***) + +(*Anti-symmetry of the subset relation*) +val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = B"; +by (rtac (iffI RS set_ext) 1); +by (REPEAT (ares_tac (prems RL [subsetD]) 1)); +val subset_antisym = result(); +val equalityI = subset_antisym; + +(* Equality rules from ZF set theory -- are they appropriate here? *) +val prems = goal Set.thy "A = B ==> A<=B"; +by (resolve_tac (prems RL [subst]) 1); +by (rtac subset_refl 1); +val equalityD1 = result(); + +val prems = goal Set.thy "A = B ==> B<=A"; +by (resolve_tac (prems RL [subst]) 1); +by (rtac subset_refl 1); +val equalityD2 = result(); + +val prems = goal Set.thy + "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"; +by (resolve_tac prems 1); +by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1)); +val equalityE = result(); + +val major::prems = goal Set.thy + "[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P"; +by (rtac (major RS equalityE) 1); +by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)); +val equalityCE = result(); + +(*Lemma for creating induction formulae -- for "pattern matching" on p + To make the induction hypotheses usable, apply "spec" or "bspec" to + put universal quantifiers over the free variables in p. *) +val prems = goal Set.thy + "[| p:A; !!z. z:A ==> p=z --> R |] ==> R"; +by (rtac mp 1); +by (REPEAT (resolve_tac (refl::prems) 1)); +val setup_induction = result(); + +goal Set.thy "{x.x:A} = A"; +by (REPEAT (ares_tac [equalityI,subsetI,CollectI] 1 ORELSE eresolve_tac [CollectD] 1)); +val trivial_set = result(); + +(*** Rules for binary union -- Un ***) + +val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B"; +by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1)); +val UnI1 = result(); + +val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B"; +by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1)); +val UnI2 = result(); + +(*Classical introduction rule: no commitment to A vs B*) +val UnCI = prove_goal Set.thy "(~c:B ==> c:A) ==> c : A Un B" + (fn prems=> + [ (rtac classical 1), + (REPEAT (ares_tac (prems@[UnI1,notI]) 1)), + (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]); + +val major::prems = goalw Set.thy [Un_def] + "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P"; +by (rtac (major RS CollectD RS disjE) 1); +by (REPEAT (eresolve_tac prems 1)); +val UnE = result(); + + +(*** Rules for small intersection -- Int ***) + +val prems = goalw Set.thy [Int_def] + "[| c:A; c:B |] ==> c : A Int B"; +by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)); +val IntI = result(); + +val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A"; +by (rtac (major RS CollectD RS conjunct1) 1); +val IntD1 = result(); + +val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B"; +by (rtac (major RS CollectD RS conjunct2) 1); +val IntD2 = result(); + +val [major,minor] = goal Set.thy + "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P"; +by (rtac minor 1); +by (rtac (major RS IntD1) 1); +by (rtac (major RS IntD2) 1); +val IntE = result(); + + +(*** Rules for set complement -- Compl ***) + +val prems = goalw Set.thy [Compl_def] + "[| c:A ==> False |] ==> c : Compl(A)"; +by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1)); +val ComplI = result(); + +(*This form, with negated conclusion, works well with the Classical prover. + Negated assumptions behave like formulae on the right side of the notional + turnstile...*) +val major::prems = goalw Set.thy [Compl_def] + "[| c : Compl(A) |] ==> ~c:A"; +by (rtac (major RS CollectD) 1); +val ComplD = result(); + +val ComplE = make_elim ComplD; + + +(*** Empty sets ***) + +goalw Set.thy [empty_def] "{x.False} = {}"; +br refl 1; +val empty_eq = result(); + +val [prem] = goalw Set.thy [empty_def] "a : {} ==> P"; +by (rtac (prem RS CollectD RS FalseE) 1); +val emptyD = result(); + +val emptyE = make_elim emptyD; + +val [prem] = goal Set.thy "~ A={} ==> (EX x.x:A)"; +br (prem RS swap) 1; +br equalityI 1; +by (ALLGOALS (fast_tac (FOL_cs addSIs [subsetI] addSEs [emptyD]))); +val not_emptyD = result(); + +(*** Singleton sets ***) + +goalw Set.thy [singleton_def] "a : {a}"; +by (rtac CollectI 1); +by (rtac refl 1); +val singletonI = result(); + +val [major] = goalw Set.thy [singleton_def] "b : {a} ==> b=a"; +by (rtac (major RS CollectD) 1); +val singletonD = result(); + +val singletonE = make_elim singletonD; + +(*** Unions of families ***) + +(*The order of the premises presupposes that A is rigid; b may be flexible*) +val prems = goalw Set.thy [UNION_def] + "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))"; +by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1)); +val UN_I = result(); + +val major::prems = goalw Set.thy [UNION_def] + "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R"; +by (rtac (major RS CollectD RS bexE) 1); +by (REPEAT (ares_tac prems 1)); +val UN_E = result(); + +val prems = goal Set.thy + "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ +\ (UN x:A. C(x)) = (UN x:B. D(x))"; +by (REPEAT (etac UN_E 1 + ORELSE ares_tac ([UN_I,equalityI,subsetI] @ + (prems RL [equalityD1,equalityD2] RL [subsetD])) 1)); +val UN_cong = result(); + +(*** Intersections of families -- INTER x:A. B(x) is Inter(B)``A ) *) + +val prems = goalw Set.thy [INTER_def] + "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"; +by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1)); +val INT_I = result(); + +val major::prems = goalw Set.thy [INTER_def] + "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)"; +by (rtac (major RS CollectD RS bspec) 1); +by (resolve_tac prems 1); +val INT_D = result(); + +(*"Classical" elimination rule -- does not require proving X:C *) +val major::prems = goalw Set.thy [INTER_def] + "[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R"; +by (rtac (major RS CollectD RS ballE) 1); +by (REPEAT (eresolve_tac prems 1)); +val INT_E = result(); + +val prems = goal Set.thy + "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \ +\ (INT x:A. C(x)) = (INT x:B. D(x))"; +by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI])); +by (REPEAT (dtac INT_D 1 + ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1)); +val INT_cong = result(); + +(*** Rules for Unions ***) + +(*The order of the premises presupposes that C is rigid; A may be flexible*) +val prems = goalw Set.thy [Union_def] + "[| X:C; A:X |] ==> A : Union(C)"; +by (REPEAT (resolve_tac (prems @ [UN_I]) 1)); +val UnionI = result(); + +val major::prems = goalw Set.thy [Union_def] + "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R"; +by (rtac (major RS UN_E) 1); +by (REPEAT (ares_tac prems 1)); +val UnionE = result(); + +(*** Rules for Inter ***) + +val prems = goalw Set.thy [Inter_def] + "[| !!X. X:C ==> A:X |] ==> A : Inter(C)"; +by (REPEAT (ares_tac ([INT_I] @ prems) 1)); +val InterI = result(); + +(*A "destruct" rule -- every X in C contains A as an element, but + A:X can hold when X:C does not! This rule is analogous to "spec". *) +val major::prems = goalw Set.thy [Inter_def] + "[| A : Inter(C); X:C |] ==> A:X"; +by (rtac (major RS INT_D) 1); +by (resolve_tac prems 1); +val InterD = result(); + +(*"Classical" elimination rule -- does not require proving X:C *) +val major::prems = goalw Set.thy [Inter_def] + "[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R"; +by (rtac (major RS INT_E) 1); +by (REPEAT (eresolve_tac prems 1)); +val InterE = result();