diff -r 000000000000 -r a5a9c433f639 src/CCL/equalities.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCL/equalities.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,134 @@ +(* Title: CCL/equalities + ID: $Id$ + +Modified version of + Title: HOL/equalities + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +Equalities involving union, intersection, inclusion, etc. +*) + +writeln"File HOL/equalities"; + +val eq_cs = set_cs addSIs [equalityI]; + +(** Binary Intersection **) + +goal Set.thy "A Int A = A"; +by (fast_tac eq_cs 1); +val Int_absorb = result(); + +goal Set.thy "A Int B = B Int A"; +by (fast_tac eq_cs 1); +val Int_commute = result(); + +goal Set.thy "(A Int B) Int C = A Int (B Int C)"; +by (fast_tac eq_cs 1); +val Int_assoc = result(); + +goal Set.thy "(A Un B) Int C = (A Int C) Un (B Int C)"; +by (fast_tac eq_cs 1); +val Int_Un_distrib = result(); + +goal Set.thy "(A<=B) <-> (A Int B = A)"; +by (fast_tac (eq_cs addSEs [equalityE]) 1); +val subset_Int_eq = result(); + +(** Binary Union **) + +goal Set.thy "A Un A = A"; +by (fast_tac eq_cs 1); +val Un_absorb = result(); + +goal Set.thy "A Un B = B Un A"; +by (fast_tac eq_cs 1); +val Un_commute = result(); + +goal Set.thy "(A Un B) Un C = A Un (B Un C)"; +by (fast_tac eq_cs 1); +val Un_assoc = result(); + +goal Set.thy "(A Int B) Un C = (A Un C) Int (B Un C)"; +by (fast_tac eq_cs 1); +val Un_Int_distrib = result(); + +goal Set.thy + "(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"; +by (fast_tac eq_cs 1); +val Un_Int_crazy = result(); + +goal Set.thy "(A<=B) <-> (A Un B = B)"; +by (fast_tac (eq_cs addSEs [equalityE]) 1); +val subset_Un_eq = result(); + +(** Simple properties of Compl -- complement of a set **) + +goal Set.thy "A Int Compl(A) = {x.False}"; +by (fast_tac eq_cs 1); +val Compl_disjoint = result(); + +goal Set.thy "A Un Compl(A) = {x.True}"; +by (fast_tac eq_cs 1); +val Compl_partition = result(); + +goal Set.thy "Compl(Compl(A)) = A"; +by (fast_tac eq_cs 1); +val double_complement = result(); + +goal Set.thy "Compl(A Un B) = Compl(A) Int Compl(B)"; +by (fast_tac eq_cs 1); +val Compl_Un = result(); + +goal Set.thy "Compl(A Int B) = Compl(A) Un Compl(B)"; +by (fast_tac eq_cs 1); +val Compl_Int = result(); + +goal Set.thy "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"; +by (fast_tac eq_cs 1); +val Compl_UN = result(); + +goal Set.thy "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"; +by (fast_tac eq_cs 1); +val Compl_INT = result(); + +(*Halmos, Naive Set Theory, page 16.*) + +goal Set.thy "((A Int B) Un C = A Int (B Un C)) <-> (C<=A)"; +by (fast_tac (eq_cs addSEs [equalityE]) 1); +val Un_Int_assoc_eq = result(); + + +(** Big Union and Intersection **) + +goal Set.thy "Union(A Un B) = Union(A) Un Union(B)"; +by (fast_tac eq_cs 1); +val Union_Un_distrib = result(); + +val prems = goal Set.thy + "(Union(C) Int A = {x.False}) <-> (ALL B:C. B Int A = {x.False})"; +by (fast_tac (eq_cs addSEs [equalityE]) 1); +val Union_disjoint = result(); + +goal Set.thy "Inter(A Un B) = Inter(A) Int Inter(B)"; +by (best_tac eq_cs 1); +val Inter_Un_distrib = result(); + +(** Unions and Intersections of Families **) + +goal Set.thy "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"; +by (fast_tac eq_cs 1); +val UN_eq = result(); + +(*Look: it has an EXISTENTIAL quantifier*) +goal Set.thy "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"; +by (fast_tac eq_cs 1); +val INT_eq = result(); + +goal Set.thy "A Int Union(B) = (UN C:B. A Int C)"; +by (fast_tac eq_cs 1); +val Int_Union_image = result(); + +goal Set.thy "A Un Inter(B) = (INT C:B. A Un C)"; +by (fast_tac eq_cs 1); +val Un_Inter_image = result();