diff -r 000000000000 -r a5a9c433f639 src/CCL/ex/Nat.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCL/ex/Nat.thy Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,38 @@ +(* Title: CCL/ex/nat.thy + ID: $Id$ + Author: Martin Coen, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +Programs defined over the natural numbers +*) + +Nat = Wfd + + +consts + + not :: "i=>i" + "#+","#*","#-", + "##","#<","#<=" :: "[i,i]=>i" (infixr 60) + ackermann :: "[i,i]=>i" + +rules + + not_def "not(b) == if b then false else true" + + add_def "a #+ b == nrec(a,b,%x g.succ(g))" + mult_def "a #* b == nrec(a,zero,%x g.b #+ g)" + sub_def "a #- b == letrec sub x y be ncase(y,x,%yy.ncase(x,zero,%xx.sub(xx,yy))) \ +\ in sub(a,b)" + le_def "a #<= b == letrec le x y be ncase(x,true,%xx.ncase(y,false,%yy.le(xx,yy))) \ +\ in le(a,b)" + lt_def "a #< b == not(b #<= a)" + + div_def "a ## b == letrec div x y be if x #< y then zero else succ(div(x#-y,y)) \ +\ in div(a,b)" + ack_def + "ackermann(a,b) == letrec ack n m be ncase(n,succ(m),%x. \ +\ ncase(m,ack(x,succ(zero)),%y.ack(x,ack(succ(x),y))))\ +\ in ack(a,b)" + +end +