diff -r 000000000000 -r a5a9c433f639 src/CCL/ex/nat.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCL/ex/nat.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,75 @@ +(* Title: CCL/ex/nat + ID: $Id$ + Author: Martin Coen, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +For nat.thy. +*) + +open Nat; + +val nat_defs = [not_def,add_def,mult_def,sub_def,le_def,lt_def,ack_def,napply_def]; + +val natBs = map (fn s=>prove_goalw Nat.thy nat_defs s (fn _ => [SIMP_TAC term_ss 1])) + ["not(true) = false", + "not(false) = true", + "zero #+ n = n", + "succ(n) #+ m = succ(n #+ m)", + "zero #* n = zero", + "succ(n) #* m = m #+ (n #* m)", + "f^zero`a = a", + "f^succ(n)`a = f(f^n`a)"]; + +val nat_congs = ccl_mk_congs Nat.thy ["not","op #+","op #*","op #-","op ##", + "op #<","op #<=","ackermann","napply"]; + +val nat_ss = term_ss addrews natBs addcongs nat_congs; + +(*** Lemma for napply ***) + +val [prem] = goal Nat.thy "n:Nat ==> f^n`f(a) = f^succ(n)`a"; +br (prem RS Nat_ind) 1; +by (ALLGOALS (ASM_SIMP_TAC (nat_ss addcongs [read_instantiate [("f","f")] arg_cong]))); +val napply_f = result(); + +(****) + +val prems = goalw Nat.thy [add_def] "[| a:Nat; b:Nat |] ==> a #+ b : Nat"; +by (typechk_tac prems 1); +val addT = result(); + +val prems = goalw Nat.thy [mult_def] "[| a:Nat; b:Nat |] ==> a #* b : Nat"; +by (typechk_tac (addT::prems) 1); +val multT = result(); + +(* Defined to return zero if a a #- b : Nat"; +by (typechk_tac (prems) 1); +by clean_ccs_tac; +be (NatPRI RS wfstI RS (NatPR_wf RS wmap_wf RS wfI)) 1; +val subT = result(); + +val prems = goalw Nat.thy [le_def] "[| a:Nat; b:Nat |] ==> a #<= b : Bool"; +by (typechk_tac (prems) 1); +by clean_ccs_tac; +be (NatPRI RS wfstI RS (NatPR_wf RS wmap_wf RS wfI)) 1; +val leT = result(); + +val prems = goalw Nat.thy [not_def,lt_def] "[| a:Nat; b:Nat |] ==> a #< b : Bool"; +by (typechk_tac (prems@[leT]) 1); +val ltT = result(); + +(* Correctness conditions for subtractive division **) + +val prems = goalw Nat.thy [div_def] + "[| a:Nat; b:{x:Nat.~x=zero} |] ==> a ## b : {x:Nat. DIV(a,b,x)}"; +by (gen_ccs_tac (prems@[ltT,subT]) 1); + +(* Termination Conditions for Ackermann's Function *) + +val prems = goalw Nat.thy [ack_def] + "[| a:Nat; b:Nat |] ==> ackermann(a,b) : Nat"; +by (gen_ccs_tac prems 1); +val relI = NatPR_wf RS (NatPR_wf RS lex_wf RS wfI); +by (REPEAT (eresolve_tac [NatPRI RS (lexI1 RS relI),NatPRI RS (lexI2 RS relI)] 1)); +result();