diff -r 000000000000 -r a5a9c433f639 src/CCL/hered.ML
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCL/hered.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,196 @@
+(* Title: CCL/hered
+ ID: $Id$
+ Author: Martin Coen, Cambridge University Computer Laboratory
+ Copyright 1993 University of Cambridge
+
+For hered.thy.
+*)
+
+open Hered;
+
+fun type_of_terms (Const("Trueprop",_) $ (Const("op =",(Type ("fun", [t,_])))$_$_)) = t;
+
+val cong_rls = ccl_mk_congs Hered.thy ["HTTgen"];
+
+(*** Hereditary Termination ***)
+
+goalw Hered.thy [HTTgen_def] "mono(%X.HTTgen(X))";
+br monoI 1;
+by (fast_tac set_cs 1);
+val HTTgen_mono = result();
+
+goalw Hered.thy [HTTgen_def]
+ "t : HTTgen(A) <-> t=true | t=false | (EX a b.t= & a : A & b : A) | \
+\ (EX f.t=lam x.f(x) & (ALL x.f(x) : A))";
+by (fast_tac set_cs 1);
+val HTTgenXH = result();
+
+goal Hered.thy
+ "t : HTT <-> t=true | t=false | (EX a b.t= & a : HTT & b : HTT) | \
+\ (EX f.t=lam x.f(x) & (ALL x.f(x) : HTT))";
+br (rewrite_rule [HTTgen_def]
+ (HTTgen_mono RS (HTT_def RS def_gfp_Tarski) RS XHlemma1)) 1;
+by (fast_tac set_cs 1);
+val HTTXH = result();
+
+(*** Introduction Rules for HTT ***)
+
+goal Hered.thy "~ bot : HTT";
+by (fast_tac (term_cs addDs [XH_to_D HTTXH]) 1);
+val HTT_bot = result();
+
+goal Hered.thy "true : HTT";
+by (fast_tac (term_cs addIs [XH_to_I HTTXH]) 1);
+val HTT_true = result();
+
+goal Hered.thy "false : HTT";
+by (fast_tac (term_cs addIs [XH_to_I HTTXH]) 1);
+val HTT_false = result();
+
+goal Hered.thy " : HTT <-> a : HTT & b : HTT";
+br (HTTXH RS iff_trans) 1;
+by (fast_tac term_cs 1);
+val HTT_pair = result();
+
+goal Hered.thy "lam x.f(x) : HTT <-> (ALL x. f(x) : HTT)";
+br (HTTXH RS iff_trans) 1;
+by (SIMP_TAC term_ss 1);
+by (safe_tac term_cs);
+by (ASM_SIMP_TAC term_ss 1);
+by (fast_tac term_cs 1);
+val HTT_lam = result();
+
+local
+ val raw_HTTrews = [HTT_bot,HTT_true,HTT_false,HTT_pair,HTT_lam];
+ fun mk_thm s = prove_goalw Hered.thy data_defs s (fn _ =>
+ [SIMP_TAC (term_ss addrews raw_HTTrews) 1]);
+in
+ val HTT_rews = raw_HTTrews @
+ map mk_thm ["one : HTT",
+ "inl(a) : HTT <-> a : HTT",
+ "inr(b) : HTT <-> b : HTT",
+ "zero : HTT",
+ "succ(n) : HTT <-> n : HTT",
+ "[] : HTT",
+ "x.xs : HTT <-> x : HTT & xs : HTT"];
+end;
+
+val HTT_Is = HTT_rews @ (HTT_rews RL [iffD2]);
+
+(*** Coinduction for HTT ***)
+
+val prems = goal Hered.thy "[| t : R; R <= HTTgen(R) |] ==> t : HTT";
+br (HTT_def RS def_coinduct) 1;
+by (REPEAT (ares_tac prems 1));
+val HTT_coinduct = result();
+
+fun HTT_coinduct_tac s i = res_inst_tac [("R",s)] HTT_coinduct i;
+
+val prems = goal Hered.thy
+ "[| t : R; R <= HTTgen(lfp(%x. HTTgen(x) Un R Un HTT)) |] ==> t : HTT";
+br (HTTgen_mono RSN(3,HTT_def RS def_coinduct3)) 1;
+by (REPEAT (ares_tac prems 1));
+val HTT_coinduct3 = result();
+val HTT_coinduct3_raw = rewrite_rule [HTTgen_def] HTT_coinduct3;
+
+fun HTT_coinduct3_tac s i = res_inst_tac [("R",s)] HTT_coinduct3 i;
+
+val HTTgenIs = map (mk_genIs Hered.thy data_defs HTTgenXH HTTgen_mono)
+ ["true : HTTgen(R)",
+ "false : HTTgen(R)",
+ "[| a : R; b : R |] ==> : HTTgen(R)",
+ "[| !!x. b(x) : R |] ==> lam x.b(x) : HTTgen(R)",
+ "one : HTTgen(R)",
+ "a : lfp(%x. HTTgen(x) Un R Un HTT) ==> \
+\ inl(a) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
+ "b : lfp(%x. HTTgen(x) Un R Un HTT) ==> \
+\ inr(b) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
+ "zero : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
+ "n : lfp(%x. HTTgen(x) Un R Un HTT) ==> \
+\ succ(n) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
+ "[] : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))",
+ "[| h : lfp(%x. HTTgen(x) Un R Un HTT); t : lfp(%x. HTTgen(x) Un R Un HTT) |] ==>\
+\ h.t : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"];
+
+(*** Formation Rules for Types ***)
+
+goal Hered.thy "Unit <= HTT";
+by (SIMP_TAC (CCL_ss addrews ([subsetXH,UnitXH] @ HTT_rews)) 1);
+val UnitF = result();
+
+goal Hered.thy "Bool <= HTT";
+by (SIMP_TAC (CCL_ss addrews ([subsetXH,BoolXH] @ HTT_rews)) 1);
+by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1);
+val BoolF = result();
+
+val prems = goal Hered.thy "[| A <= HTT; B <= HTT |] ==> A + B <= HTT";
+by (SIMP_TAC (CCL_ss addrews ([subsetXH,PlusXH] @ HTT_rews)) 1);
+by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1);
+val PlusF = result();
+
+val prems = goal Hered.thy
+ "[| A <= HTT; !!x.x:A ==> B(x) <= HTT |] ==> SUM x:A.B(x) <= HTT";
+by (SIMP_TAC (CCL_ss addrews ([subsetXH,SgXH] @ HTT_rews)) 1);
+by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1);
+val SigmaF = result();
+
+(*** Formation Rules for Recursive types - using coinduction these only need ***)
+(*** exhaution rule for type-former ***)
+
+(*Proof by induction - needs induction rule for type*)
+goal Hered.thy "Nat <= HTT";
+by (SIMP_TAC (term_ss addrews [subsetXH]) 1);
+by (safe_tac set_cs);
+be Nat_ind 1;
+by (ALLGOALS (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD]))));
+val NatF = result();
+
+goal Hered.thy "Nat <= HTT";
+by (safe_tac set_cs);
+be HTT_coinduct3 1;
+by (fast_tac (set_cs addIs HTTgenIs
+ addSEs [HTTgen_mono RS ci3_RI] addEs [XH_to_E NatXH]) 1);
+val NatF = result();
+
+val [prem] = goal Hered.thy "A <= HTT ==> List(A) <= HTT";
+by (safe_tac set_cs);
+be HTT_coinduct3 1;
+by (fast_tac (set_cs addSIs HTTgenIs
+ addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)]
+ addEs [XH_to_E ListXH]) 1);
+val ListF = result();
+
+val [prem] = goal Hered.thy "A <= HTT ==> Lists(A) <= HTT";
+by (safe_tac set_cs);
+be HTT_coinduct3 1;
+by (fast_tac (set_cs addSIs HTTgenIs
+ addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)]
+ addEs [XH_to_E ListsXH]) 1);
+val ListsF = result();
+
+val [prem] = goal Hered.thy "A <= HTT ==> ILists(A) <= HTT";
+by (safe_tac set_cs);
+be HTT_coinduct3 1;
+by (fast_tac (set_cs addSIs HTTgenIs
+ addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)]
+ addEs [XH_to_E IListsXH]) 1);
+val IListsF = result();
+
+(*** A possible use for this predicate is proving equality from pre-order ***)
+(*** but it seems as easy (and more general) to do this directly by coinduction ***)
+(*
+val prems = goal Hered.thy "[| t : HTT; t [= u |] ==> u [= t";
+by (po_coinduct_tac "{p. EX a b.p= & b : HTT & b [= a}" 1);
+by (fast_tac (ccl_cs addIs prems) 1);
+by (safe_tac ccl_cs);
+bd (poXH RS iffD1) 1;
+by (safe_tac (set_cs addSEs [HTT_bot RS notE]));
+by (REPEAT_SOME (rtac (POgenXH RS iffD2) ORELSE' etac rev_mp));
+by (ALLGOALS (SIMP_TAC (term_ss addrews HTT_rews)));
+by (ALLGOALS (fast_tac ccl_cs));
+val HTT_po_op = result();
+
+val prems = goal Hered.thy "[| t : HTT; t [= u |] ==> t = u";
+by (REPEAT (ares_tac (prems @ [conjI RS (eq_iff RS iffD2),HTT_po_op]) 1));
+val HTT_po_eq = result();
+*)