diff -r 000000000000 -r a5a9c433f639 src/CCL/subset.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCL/subset.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,129 @@ +(* Title: CCL/subset + ID: $Id$ + +Modified version of + Title: HOL/subset + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +Derived rules involving subsets +Union and Intersection as lattice operations +*) + +(*** Big Union -- least upper bound of a set ***) + +val prems = goal Set.thy + "B:A ==> B <= Union(A)"; +by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1)); +val Union_upper = result(); + +val prems = goal Set.thy + "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C"; +by (REPEAT (ares_tac [subsetI] 1 + ORELSE eresolve_tac ([UnionE] @ (prems RL [subsetD])) 1)); +val Union_least = result(); + + +(*** Big Intersection -- greatest lower bound of a set ***) + +val prems = goal Set.thy + "B:A ==> Inter(A) <= B"; +by (REPEAT (resolve_tac (prems@[subsetI]) 1 + ORELSE etac InterD 1)); +val Inter_lower = result(); + +val prems = goal Set.thy + "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)"; +by (REPEAT (ares_tac [subsetI,InterI] 1 + ORELSE eresolve_tac (prems RL [subsetD]) 1)); +val Inter_greatest = result(); + +(*** Finite Union -- the least upper bound of 2 sets ***) + +goal Set.thy "A <= A Un B"; +by (REPEAT (ares_tac [subsetI,UnI1] 1)); +val Un_upper1 = result(); + +goal Set.thy "B <= A Un B"; +by (REPEAT (ares_tac [subsetI,UnI2] 1)); +val Un_upper2 = result(); + +val prems = goal Set.thy "[| A<=C; B<=C |] ==> A Un B <= C"; +by (cut_facts_tac prems 1); +by (DEPTH_SOLVE (ares_tac [subsetI] 1 + ORELSE eresolve_tac [UnE,subsetD] 1)); +val Un_least = result(); + +(*** Finite Intersection -- the greatest lower bound of 2 sets *) + +goal Set.thy "A Int B <= A"; +by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)); +val Int_lower1 = result(); + +goal Set.thy "A Int B <= B"; +by (REPEAT (ares_tac [subsetI] 1 ORELSE etac IntE 1)); +val Int_lower2 = result(); + +val prems = goal Set.thy "[| C<=A; C<=B |] ==> C <= A Int B"; +by (cut_facts_tac prems 1); +by (REPEAT (ares_tac [subsetI,IntI] 1 + ORELSE etac subsetD 1)); +val Int_greatest = result(); + +(*** Monotonicity ***) + +val [prem] = goalw Set.thy [mono_def] + "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)"; +by (REPEAT (ares_tac [allI, impI, prem] 1)); +val monoI = result(); + +val [major,minor] = goalw Set.thy [mono_def] + "[| mono(f); A <= B |] ==> f(A) <= f(B)"; +by (rtac (major RS spec RS spec RS mp) 1); +by (rtac minor 1); +val monoD = result(); + +val [prem] = goalw Set.thy [mono_def] "(!!x.f(x) = g(x)) ==> mono(f) <-> mono(g)"; +by (REPEAT (resolve_tac (iff_refl::FOL_congs @ [prem RS subst]) 1)); +val mono_cong = result(); + +val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)"; +by (rtac Un_least 1); +by (rtac (Un_upper1 RS (prem RS monoD)) 1); +by (rtac (Un_upper2 RS (prem RS monoD)) 1); +val mono_Un = result(); + +val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)"; +by (rtac Int_greatest 1); +by (rtac (Int_lower1 RS (prem RS monoD)) 1); +by (rtac (Int_lower2 RS (prem RS monoD)) 1); +val mono_Int = result(); + +(****) + +val set_cs = FOL_cs + addSIs [ballI, subsetI, InterI, INT_I, CollectI, + ComplI, IntI, UnCI, singletonI] + addIs [bexI, UnionI, UN_I] + addSEs [bexE, UnionE, UN_E, + CollectE, ComplE, IntE, UnE, emptyE, singletonE] + addEs [ballE, InterD, InterE, INT_D, INT_E, subsetD, subsetCE]; + +fun cfast_tac prems = cut_facts_tac prems THEN' fast_tac set_cs; + +fun prover s = prove_goal Set.thy s (fn _=>[fast_tac set_cs 1]); + +val mem_rews = [trivial_set,empty_eq] @ (map prover + [ "(a : A Un B) <-> (a:A | a:B)", + "(a : A Int B) <-> (a:A & a:B)", + "(a : Compl(B)) <-> (~a:B)", + "(a : {b}) <-> (a=b)", + "(a : {}) <-> False", + "(a : {x.P(x)}) <-> P(a)" ]); + +val set_congs = + [Collect_cong, ball_cong, bex_cong, INT_cong, UN_cong, mono_cong] @ + mk_congs Set.thy ["Compl", "op Int", "op Un", "Union", "Inter", + "op :", "op <=", "singleton"]; + +val set_ss = FOL_ss addcongs set_congs addrews mem_rews;