diff -r 000000000000 -r a5a9c433f639 src/CTT/CTT.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CTT/CTT.thy Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,253 @@ +(* Title: CTT/ctt.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +Constructive Type Theory +*) + +CTT = Pure + + +types i,t,o 0 + +arities i,t,o :: logic + +consts + (*Types*) + F,T :: "t" (*F is empty, T contains one element*) + contr :: "i=>i" + tt :: "i" + (*Natural numbers*) + N :: "t" + succ :: "i=>i" + rec :: "[i, i, [i,i]=>i] => i" + (*Unions*) + inl,inr :: "i=>i" + when :: "[i, i=>i, i=>i]=>i" + (*General Sum and Binary Product*) + Sum :: "[t, i=>t]=>t" + fst,snd :: "i=>i" + split :: "[i, [i,i]=>i] =>i" + (*General Product and Function Space*) + Prod :: "[t, i=>t]=>t" + (*Equality type*) + Eq :: "[t,i,i]=>t" + eq :: "i" + (*Judgements*) + Type :: "t => prop" ("(_ type)" [10] 5) + Eqtype :: "[t,t]=>prop" ("(3_ =/ _)" [10,10] 5) + Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5) + Eqelem :: "[i,i,t]=>prop" ("(3_ =/ _ :/ _)" [10,10,10] 5) + Reduce :: "[i,i]=>prop" ("Reduce[_,_]") + (*Types*) + "@PROD" :: "[id,t,t]=>t" ("(3PROD _:_./ _)" 10) + "@SUM" :: "[id,t,t]=>t" ("(3SUM _:_./ _)" 10) + "+" :: "[t,t]=>t" (infixr 40) + (*Invisible infixes!*) + "@-->" :: "[t,t]=>t" ("(_ -->/ _)" [31,30] 30) + "@*" :: "[t,t]=>t" ("(_ */ _)" [51,50] 50) + (*Functions*) + lambda :: "(i => i) => i" (binder "lam " 10) + "`" :: "[i,i]=>i" (infixl 60) + (*Natural numbers*) + "0" :: "i" ("0") + (*Pairing*) + pair :: "[i,i]=>i" ("(1<_,/_>)") + +translations + "PROD x:A. B" => "Prod(A, %x. B)" + "SUM x:A. B" => "Sum(A, %x. B)" + +rules + + (*Reduction: a weaker notion than equality; a hack for simplification. + Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" + are textually identical.*) + + (*does not verify a:A! Sound because only trans_red uses a Reduce premise + No new theorems can be proved about the standard judgements.*) + refl_red "Reduce[a,a]" + red_if_equal "a = b : A ==> Reduce[a,b]" + trans_red "[| a = b : A; Reduce[b,c] |] ==> a = c : A" + + (*Reflexivity*) + + refl_type "A type ==> A = A" + refl_elem "a : A ==> a = a : A" + + (*Symmetry*) + + sym_type "A = B ==> B = A" + sym_elem "a = b : A ==> b = a : A" + + (*Transitivity*) + + trans_type "[| A = B; B = C |] ==> A = C" + trans_elem "[| a = b : A; b = c : A |] ==> a = c : A" + + equal_types "[| a : A; A = B |] ==> a : B" + equal_typesL "[| a = b : A; A = B |] ==> a = b : B" + + (*Substitution*) + + subst_type "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type" + subst_typeL "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)" + + subst_elem "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)" + subst_elemL + "[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)" + + + (*The type N -- natural numbers*) + + NF "N type" + NI0 "0 : N" + NI_succ "a : N ==> succ(a) : N" + NI_succL "a = b : N ==> succ(a) = succ(b) : N" + + NE + "[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \ +\ ==> rec(p, a, %u v.b(u,v)) : C(p)" + + NEL + "[| p = q : N; a = c : C(0); \ +\ !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] \ +\ ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)" + + NC0 + "[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \ +\ ==> rec(0, a, %u v.b(u,v)) = a : C(0)" + + NC_succ + "[| p: N; a: C(0); \ +\ !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> \ +\ rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))" + + (*The fourth Peano axiom. See page 91 of Martin-Lof's book*) + zero_ne_succ + "[| a: N; 0 = succ(a) : N |] ==> 0: F" + + + (*The Product of a family of types*) + + ProdF "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type" + + ProdFL + "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> \ +\ PROD x:A.B(x) = PROD x:C.D(x)" + + ProdI + "[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x.b(x) : PROD x:A.B(x)" + + ProdIL + "[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> \ +\ lam x.b(x) = lam x.c(x) : PROD x:A.B(x)" + + ProdE "[| p : PROD x:A.B(x); a : A |] ==> p`a : B(a)" + ProdEL "[| p=q: PROD x:A.B(x); a=b : A |] ==> p`a = q`b : B(a)" + + ProdC + "[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> \ +\ (lam x.b(x)) ` a = b(a) : B(a)" + + ProdC2 + "p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)" + + + (*The Sum of a family of types*) + + SumF "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type" + SumFL + "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A.B(x) = SUM x:C.D(x)" + + SumI "[| a : A; b : B(a) |] ==> : SUM x:A.B(x)" + SumIL "[| a=c:A; b=d:B(a) |] ==> = : SUM x:A.B(x)" + + SumE + "[| p: SUM x:A.B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C() |] \ +\ ==> split(p, %x y.c(x,y)) : C(p)" + + SumEL + "[| p=q : SUM x:A.B(x); \ +\ !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C()|] \ +\ ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)" + + SumC + "[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C() |] \ +\ ==> split(, %x y.c(x,y)) = c(a,b) : C()" + + fst_def "fst(a) == split(a, %x y.x)" + snd_def "snd(a) == split(a, %x y.y)" + + + (*The sum of two types*) + + PlusF "[| A type; B type |] ==> A+B type" + PlusFL "[| A = C; B = D |] ==> A+B = C+D" + + PlusI_inl "[| a : A; B type |] ==> inl(a) : A+B" + PlusI_inlL "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B" + + PlusI_inr "[| A type; b : B |] ==> inr(b) : A+B" + PlusI_inrL "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" + + PlusE + "[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); \ +\ !!y. y:B ==> d(y): C(inr(y)) |] \ +\ ==> when(p, %x.c(x), %y.d(y)) : C(p)" + + PlusEL + "[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); \ +\ !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] \ +\ ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)" + + PlusC_inl + "[| a: A; !!x. x:A ==> c(x): C(inl(x)); \ +\ !!y. y:B ==> d(y): C(inr(y)) |] \ +\ ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))" + + PlusC_inr + "[| b: B; !!x. x:A ==> c(x): C(inl(x)); \ +\ !!y. y:B ==> d(y): C(inr(y)) |] \ +\ ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))" + + + (*The type Eq*) + + EqF "[| A type; a : A; b : A |] ==> Eq(A,a,b) type" + EqFL "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)" + EqI "a = b : A ==> eq : Eq(A,a,b)" + EqE "p : Eq(A,a,b) ==> a = b : A" + + (*By equality of types, can prove C(p) from C(eq), an elimination rule*) + EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" + + (*The type F*) + + FF "F type" + FE "[| p: F; C type |] ==> contr(p) : C" + FEL "[| p = q : F; C type |] ==> contr(p) = contr(q) : C" + + (*The type T + Martin-Lof's book (page 68) discusses elimination and computation. + Elimination can be derived by computation and equality of types, + but with an extra premise C(x) type x:T. + Also computation can be derived from elimination. *) + + TF "T type" + TI "tt : T" + TE "[| p : T; c : C(tt) |] ==> c : C(p)" + TEL "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)" + TC "p : T ==> p = tt : T" +end + + +ML + +val parse_translation = + [("@-->", ndependent_tr "Prod"), ("@*", ndependent_tr "Sum")]; + +val print_translation = + [("Prod", dependent_tr' ("@PROD", "@-->")), + ("Sum", dependent_tr' ("@SUM", "@*"))]; +