diff -r 000000000000 -r a5a9c433f639 src/CTT/ex/equal.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CTT/ex/equal.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,85 @@ +(* Title: CTT/ex/equal + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +Equality reasoning by rewriting. +*) + +val prems = +goal CTT.thy "p : Sum(A,B) ==> split(p,pair) = p : Sum(A,B)"; +by (rtac EqE 1); +by (resolve_tac elim_rls 1 THEN resolve_tac prems 1); +by (rew_tac prems); +val split_eq = result(); + +val prems = +goal CTT.thy + "[| A type; B type; p : A+B |] ==> when(p,inl,inr) = p : A + B"; +by (rtac EqE 1); +by (resolve_tac elim_rls 1 THEN resolve_tac prems 1); +by (rew_tac prems); +val when_eq = result(); + + +(*in the "rec" formulation of addition, 0+n=n *) +val prems = +goal CTT.thy "p:N ==> rec(p,0, %y z.succ(y)) = p : N"; +by (rtac EqE 1); +by (resolve_tac elim_rls 1 THEN resolve_tac prems 1); +by (rew_tac prems); +result(); + + +(*the harder version, n+0=n: recursive, uses induction hypothesis*) +val prems = +goal CTT.thy "p:N ==> rec(p,0, %y z.succ(z)) = p : N"; +by (rtac EqE 1); +by (resolve_tac elim_rls 1 THEN resolve_tac prems 1); +by (hyp_rew_tac prems); +result(); + + +(*Associativity of addition*) +val prems = +goal CTT.thy + "[| a:N; b:N; c:N |] ==> rec(rec(a, b, %x y.succ(y)), c, %x y.succ(y)) = \ +\ rec(a, rec(b, c, %x y.succ(y)), %x y.succ(y)) : N"; +by (NE_tac "a" 1); +by (hyp_rew_tac prems); +result(); + + +(*Martin-Lof (1984) page 62: pairing is surjective*) +val prems = +goal CTT.thy + "p : Sum(A,B) ==> = p : Sum(A,B)"; +by (rtac EqE 1); +by (resolve_tac elim_rls 1 THEN resolve_tac prems 1); +by (DEPTH_SOLVE_1 (rew_tac prems)); (*!!!!!!!*) +result(); + + +val prems = +goal CTT.thy "[| a : A; b : B |] ==> \ +\ (lam u. split(u, %v w.)) ` = : SUM x:B.A"; +by (rew_tac prems); +result(); + + +(*a contrived, complicated simplication, requires sum-elimination also*) +val prems = +goal CTT.thy + "(lam f. lam x. f`(f`x)) ` (lam u. split(u, %v w.)) = \ +\ lam x. x : PROD x:(SUM y:N.N). (SUM y:N.N)"; +by (resolve_tac reduction_rls 1); +by (resolve_tac intrL_rls 3); +by (rtac EqE 4); +by (rtac SumE 4 THEN assume_tac 4); +(*order of unifiers is essential here*) +by (rew_tac prems); +result(); + +writeln"Reached end of file."; +(*28 August 1988: loaded this file in 34 seconds*) +(*2 September 1988: loaded this file in 48 seconds*)