diff -r 000000000000 -r a5a9c433f639 src/FOL/ex/int.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/int.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,421 @@ +(* Title: FOL/ex/int + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +Intuitionistic First-Order Logic + +Single-step commands: +by (Int.step_tac 1); +by (biresolve_tac safe_brls 1); +by (biresolve_tac haz_brls 1); +by (assume_tac 1); +by (Int.safe_tac 1); +by (Int.mp_tac 1); +by (Int.fast_tac 1); +*) + +writeln"File FOL/ex/int."; + +(*Note: for PROPOSITIONAL formulae... + ~A is classically provable iff it is intuitionistically provable. + Therefore A is classically provable iff ~~A is intuitionistically provable. + +Let Q be the conjuction of the propositions A|~A, one for each atom A in +P. If P is provable classically, then clearly P&Q is provable +intuitionistically, so ~~(P&Q) is also provable intuitionistically. +The latter is intuitionistically equivalent to ~~P&~~Q, hence to ~~P, +since ~~Q is intuitionistically provable. Finally, if P is a negation then +~~P is intuitionstically equivalent to P. [Andy Pitts] +*) + +goal IFOL.thy "~~(P&Q) <-> ~~P & ~~Q"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "~~~P <-> ~P"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "~~((P --> Q | R) --> (P-->Q) | (P-->R))"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "(P<->Q) <-> (Q<->P)"; +by (Int.fast_tac 1); +result(); + + +writeln"Lemmas for the propositional double-negation translation"; + +goal IFOL.thy "P --> ~~P"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "~~(~~P --> P)"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "~~P & ~~(P --> Q) --> ~~Q"; +by (Int.fast_tac 1); +result(); + + +writeln"The following are classically but not constructively valid."; + +(*The attempt to prove them terminates quickly!*) +goal IFOL.thy "((P-->Q) --> P) --> P"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +(*Check that subgoals remain: proof failed.*) +getgoal 1; + +goal IFOL.thy "(P&Q-->R) --> (P-->R) | (Q-->R)"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +getgoal 1; + + +writeln"Intuitionistic FOL: propositional problems based on Pelletier."; + +writeln"Problem ~~1"; +goal IFOL.thy "~~((P-->Q) <-> (~Q --> ~P))"; +by (Int.fast_tac 1); +result(); +(*5 secs*) + + +writeln"Problem ~~2"; +goal IFOL.thy "~~(~~P <-> P)"; +by (Int.fast_tac 1); +result(); +(*1 secs*) + + +writeln"Problem 3"; +goal IFOL.thy "~(P-->Q) --> (Q-->P)"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~4"; +goal IFOL.thy "~~((~P-->Q) <-> (~Q --> P))"; +by (Int.fast_tac 1); +result(); +(*9 secs*) + +writeln"Problem ~~5"; +goal IFOL.thy "~~((P|Q-->P|R) --> P|(Q-->R))"; +by (Int.fast_tac 1); +result(); +(*10 secs*) + + +writeln"Problem ~~6"; +goal IFOL.thy "~~(P | ~P)"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~7"; +goal IFOL.thy "~~(P | ~~~P)"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~8. Peirce's law"; +goal IFOL.thy "~~(((P-->Q) --> P) --> P)"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 9"; +goal IFOL.thy "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; +by (Int.fast_tac 1); +result(); +(*9 secs*) + + +writeln"Problem 10"; +goal IFOL.thy "(Q-->R) --> (R-->P&Q) --> (P-->(Q|R)) --> (P<->Q)"; +by (Int.fast_tac 1); +result(); + +writeln"11. Proved in each direction (incorrectly, says Pelletier!!) "; +goal IFOL.thy "P<->P"; +by (Int.fast_tac 1); + +writeln"Problem ~~12. Dijkstra's law "; +goal IFOL.thy "~~(((P <-> Q) <-> R) <-> (P <-> (Q <-> R)))"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "((P <-> Q) <-> R) --> ~~(P <-> (Q <-> R))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 13. Distributive law"; +goal IFOL.thy "P | (Q & R) <-> (P | Q) & (P | R)"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~14"; +goal IFOL.thy "~~((P <-> Q) <-> ((Q | ~P) & (~Q|P)))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~15"; +goal IFOL.thy "~~((P --> Q) <-> (~P | Q))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~16"; +goal IFOL.thy "~~((P-->Q) | (Q-->P))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~17"; +goal IFOL.thy + "~~(((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S)))"; +by (Int.fast_tac 1); +result(); + +(*Dijkstra's "Golden Rule"*) +goal IFOL.thy "(P&Q) <-> P <-> Q <-> (P|Q)"; +by (Int.fast_tac 1); +result(); + + +writeln"U****Examples with quantifiers****"; + + +writeln"The converse is classical in the following implications..."; + +goal IFOL.thy "(EX x.P(x)-->Q) --> (ALL x.P(x)) --> Q"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "((ALL x.P(x))-->Q) --> ~ (ALL x. P(x) & ~Q)"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "((ALL x. ~P(x))-->Q) --> ~ (ALL x. ~ (P(x)|Q))"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "(ALL x.P(x)) | Q --> (ALL x. P(x) | Q)"; +by (Int.fast_tac 1); +result(); + +goal IFOL.thy "(EX x. P --> Q(x)) --> (P --> (EX x. Q(x)))"; +by (Int.fast_tac 1); +result(); + + + + +writeln"The following are not constructively valid!"; +(*The attempt to prove them terminates quickly!*) + +goal IFOL.thy "((ALL x.P(x))-->Q) --> (EX x.P(x)-->Q)"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +getgoal 1; + +goal IFOL.thy "(P --> (EX x.Q(x))) --> (EX x. P-->Q(x))"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +getgoal 1; + +goal IFOL.thy "(ALL x. P(x) | Q) --> ((ALL x.P(x)) | Q)"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +getgoal 1; + +goal IFOL.thy "(ALL x. ~~P(x)) --> ~~(ALL x. P(x))"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +getgoal 1; + +(*Classically but not intuitionistically valid. Proved by a bug in 1986!*) +goal IFOL.thy "EX x. Q(x) --> (ALL x. Q(x))"; +by (Int.fast_tac 1) handle ERROR => writeln"Failed, as expected"; +getgoal 1; + + +writeln"Hard examples with quantifiers"; + +(*The ones that have not been proved are not known to be valid! + Some will require quantifier duplication -- not currently available*) + +writeln"Problem ~~18"; +goal IFOL.thy "~~(EX y. ALL x. P(y)-->P(x))"; +(*NOT PROVED*) + +writeln"Problem ~~19"; +goal IFOL.thy "~~(EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x)))"; +(*NOT PROVED*) + +writeln"Problem 20"; +goal IFOL.thy "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) \ +\ --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 21"; +goal IFOL.thy "(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> ~~(EX x. P<->Q(x))"; +(*NOT PROVED*) + +writeln"Problem 22"; +goal IFOL.thy "(ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~23"; +goal IFOL.thy "~~ ((ALL x. P | Q(x)) <-> (P | (ALL x. Q(x))))"; +by (Int.best_tac 1); +result(); + +writeln"Problem 24"; +goal IFOL.thy "~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) & \ +\ ~(EX x.P(x)) --> (EX x.Q(x)) & (ALL x. Q(x)|R(x) --> S(x)) \ +\ --> (EX x. P(x)&R(x))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 25"; +goal IFOL.thy "(EX x. P(x)) & \ +\ (ALL x. L(x) --> ~ (M(x) & R(x))) & \ +\ (ALL x. P(x) --> (M(x) & L(x))) & \ +\ ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x))) \ +\ --> (EX x. Q(x)&P(x))"; +by (Int.best_tac 1); +result(); + +writeln"Problem ~~26"; +goal IFOL.thy "(~~(EX x. p(x)) <-> ~~(EX x. q(x))) & \ +\ (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y))) \ +\ --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))"; +(*NOT PROVED*) + +writeln"Problem 27"; +goal IFOL.thy "(EX x. P(x) & ~Q(x)) & \ +\ (ALL x. P(x) --> R(x)) & \ +\ (ALL x. M(x) & L(x) --> P(x)) & \ +\ ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) \ +\ --> (ALL x. M(x) --> ~L(x))"; +by (Int.fast_tac 1); (*44 secs*) +result(); + +writeln"Problem ~~28. AMENDED"; +goal IFOL.thy "(ALL x. P(x) --> (ALL x. Q(x))) & \ +\ (~~(ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) & \ +\ (~~(EX x.S(x)) --> (ALL x. L(x) --> M(x))) \ +\ --> (ALL x. P(x) & L(x) --> M(x))"; +by (Int.fast_tac 1); (*101 secs*) +result(); + +writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; +goal IFOL.thy "(EX x. P(x)) & (EX y. Q(y)) \ +\ --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y)) <-> \ +\ (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem ~~30"; +goal IFOL.thy "(ALL x. (P(x) | Q(x)) --> ~ R(x)) & \ +\ (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \ +\ --> (ALL x. ~~S(x))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 31"; +goal IFOL.thy "~(EX x.P(x) & (Q(x) | R(x))) & \ +\ (EX x. L(x) & P(x)) & \ +\ (ALL x. ~ R(x) --> M(x)) \ +\ --> (EX x. L(x) & M(x))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 32"; +goal IFOL.thy "(ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \ +\ (ALL x. S(x) & R(x) --> L(x)) & \ +\ (ALL x. M(x) --> R(x)) \ +\ --> (ALL x. P(x) & M(x) --> L(x))"; +by (Int.best_tac 1); +result(); + +writeln"Problem ~~33"; +goal IFOL.thy "(ALL x. ~~(P(a) & (P(x)-->P(b))-->P(c))) <-> \ +\ (ALL x. ~~((~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c))))"; +by (Int.best_tac 1); +result(); + + +writeln"Problem 36"; +goal IFOL.thy + "(ALL x. EX y. J(x,y)) & \ +\ (ALL x. EX y. G(x,y)) & \ +\ (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z))) \ +\ --> (ALL x. EX y. H(x,y))"; +by (Int.fast_tac 1); (*35 secs*) +result(); + +writeln"Problem 37"; +goal IFOL.thy + "(ALL z. EX w. ALL x. EX y. \ +\ ~~(P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u.Q(u,w)))) & \ +\ (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) & \ +\ (~~(EX x y. Q(x,y)) --> (ALL x. R(x,x))) \ +\ --> ~~(ALL x. EX y. R(x,y))"; +(*NOT PROVED*) + +writeln"Problem 39"; +goal IFOL.thy "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 40. AMENDED"; +goal IFOL.thy "(EX y. ALL x. F(x,y) <-> F(x,x)) --> \ +\ ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 44"; +goal IFOL.thy "(ALL x. f(x) --> \ +\ (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y)))) & \ +\ (EX x. j(x) & (ALL y. g(y) --> h(x,y))) \ +\ --> (EX x. j(x) & ~f(x))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 48"; +goal IFOL.thy "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 51"; +goal IFOL.thy + "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ +\ (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)"; +by (Int.best_tac 1); (*60 seconds*) +result(); + +writeln"Problem 52"; +(*Almost the same as 51. *) +goal IFOL.thy + "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ +\ (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)"; +by (Int.best_tac 1); (*60 seconds*) +result(); + +writeln"Problem 56"; +goal IFOL.thy + "(ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 57"; +goal IFOL.thy + "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \ +\ (ALL x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))"; +by (Int.fast_tac 1); +result(); + +writeln"Problem 60"; +goal IFOL.thy + "ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"; +by (Int.fast_tac 1); +result(); + +writeln"Reached end of file.";