diff -r 000000000000 -r a5a9c433f639 src/FOLP/ifolp.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOLP/ifolp.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,444 @@ +(* Title: FOLP/ifol.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +Tactics and lemmas for ifol.thy (intuitionistic first-order logic) +*) + +open IFOLP; + +signature IFOLP_LEMMAS = + sig + val allE: thm + val all_cong: thm + val all_dupE: thm + val all_impE: thm + val box_equals: thm + val conjE: thm + val conj_cong: thm + val conj_impE: thm + val contrapos: thm + val disj_cong: thm + val disj_impE: thm + val eq_cong: thm + val ex1I: thm + val ex1E: thm + val ex1_equalsE: thm +(* val ex1_cong: thm****) + val ex_cong: thm + val ex_impE: thm + val iffD1: thm + val iffD2: thm + val iffE: thm + val iffI: thm + val iff_cong: thm + val iff_impE: thm + val iff_refl: thm + val iff_sym: thm + val iff_trans: thm + val impE: thm + val imp_cong: thm + val imp_impE: thm + val mp_tac: int -> tactic + val notE: thm + val notI: thm + val not_cong: thm + val not_impE: thm + val not_sym: thm + val not_to_imp: thm + val pred1_cong: thm + val pred2_cong: thm + val pred3_cong: thm + val pred_congs: thm list + val refl: thm + val rev_mp: thm + val simp_equals: thm + val subst: thm + val ssubst: thm + val subst_context: thm + val subst_context2: thm + val subst_context3: thm + val sym: thm + val trans: thm + val TrueI: thm + val uniq_assume_tac: int -> tactic + val uniq_mp_tac: int -> tactic + end; + + +structure IFOLP_Lemmas : IFOLP_LEMMAS = +struct + +val TrueI = TrueI; + +(*** Sequent-style elimination rules for & --> and ALL ***) + +val conjE = prove_goal IFOLP.thy + "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R" + (fn prems=> + [ (REPEAT (resolve_tac prems 1 + ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN + resolve_tac prems 1))) ]); + +val impE = prove_goal IFOLP.thy + "[| p:P-->Q; q:P; !!x.x:Q ==> r(x):R |] ==> ?p:R" + (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); + +val allE = prove_goal IFOLP.thy + "[| p:ALL x.P(x); !!y.y:P(x) ==> q(y):R |] ==> ?p:R" + (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); + +(*Duplicates the quantifier; for use with eresolve_tac*) +val all_dupE = prove_goal IFOLP.thy + "[| p:ALL x.P(x); !!y z.[| y:P(x); z:ALL x.P(x) |] ==> q(y,z):R \ +\ |] ==> ?p:R" + (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); + + +(*** Negation rules, which translate between ~P and P-->False ***) + +val notI = prove_goalw IFOLP.thy [not_def] "(!!x.x:P ==> q(x):False) ==> ?p:~P" + (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]); + +val notE = prove_goalw IFOLP.thy [not_def] "[| p:~P; q:P |] ==> ?p:R" + (fn prems=> + [ (resolve_tac [mp RS FalseE] 1), + (REPEAT (resolve_tac prems 1)) ]); + +(*This is useful with the special implication rules for each kind of P. *) +val not_to_imp = prove_goal IFOLP.thy + "[| p:~P; !!x.x:(P-->False) ==> q(x):Q |] ==> ?p:Q" + (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]); + + +(* For substitution int an assumption P, reduce Q to P-->Q, substitute into + this implication, then apply impI to move P back into the assumptions. + To specify P use something like + eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1 *) +val rev_mp = prove_goal IFOLP.thy "[| p:P; q:P --> Q |] ==> ?p:Q" + (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); + + +(*Contrapositive of an inference rule*) +val contrapos = prove_goal IFOLP.thy "[| p:~Q; !!y.y:P==>q(y):Q |] ==> ?a:~P" + (fn [major,minor]=> + [ (rtac (major RS notE RS notI) 1), + (etac minor 1) ]); + +(** Unique assumption tactic. + Ignores proof objects. + Fails unless one assumption is equal and exactly one is unifiable +**) + +local + fun discard_proof (Const("Proof",_) $ P $ _) = P; +in +val uniq_assume_tac = + SUBGOAL + (fn (prem,i) => + let val hyps = map discard_proof (Logic.strip_assums_hyp prem) + and concl = discard_proof (Logic.strip_assums_concl prem) + in + if exists (fn hyp => hyp aconv concl) hyps + then case distinct (filter (fn hyp=> could_unify(hyp,concl)) hyps) of + [_] => assume_tac i + | _ => no_tac + else no_tac + end); +end; + + +(*** Modus Ponens Tactics ***) + +(*Finds P-->Q and P in the assumptions, replaces implication by Q *) +fun mp_tac i = eresolve_tac [notE,make_elim mp] i THEN assume_tac i; + +(*Like mp_tac but instantiates no variables*) +fun uniq_mp_tac i = eresolve_tac [notE,impE] i THEN uniq_assume_tac i; + + +(*** If-and-only-if ***) + +val iffI = prove_goalw IFOLP.thy [iff_def] + "[| !!x.x:P ==> q(x):Q; !!x.x:Q ==> r(x):P |] ==> ?p:P<->Q" + (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]); + + +(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *) +val iffE = prove_goalw IFOLP.thy [iff_def] + "[| p:P <-> Q; !!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R |] ==> ?p:R" + (fn prems => [ (resolve_tac [conjE] 1), (REPEAT (ares_tac prems 1)) ]); + +(* Destruct rules for <-> similar to Modus Ponens *) + +val iffD1 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q; q:P |] ==> ?p:Q" + (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); + +val iffD2 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q; q:Q |] ==> ?p:P" + (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); + +val iff_refl = prove_goal IFOLP.thy "?p:P <-> P" + (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]); + +val iff_sym = prove_goal IFOLP.thy "p:Q <-> P ==> ?p:P <-> Q" + (fn [major] => + [ (rtac (major RS iffE) 1), + (rtac iffI 1), + (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]); + +val iff_trans = prove_goal IFOLP.thy "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R" + (fn prems => + [ (cut_facts_tac prems 1), + (rtac iffI 1), + (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]); + + +(*** Unique existence. NOTE THAT the following 2 quantifications + EX!x such that [EX!y such that P(x,y)] (sequential) + EX!x,y such that P(x,y) (simultaneous) + do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. +***) + +val ex1I = prove_goalw IFOLP.thy [ex1_def] + "[| p:P(a); !!x u.u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)" + (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]); + +val ex1E = prove_goalw IFOLP.thy [ex1_def] + "[| p:EX! x.P(x); \ +\ !!x u v. [| u:P(x); v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R |] ==>\ +\ ?a : R" + (fn prems => + [ (cut_facts_tac prems 1), + (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]); + + +(*** <-> congruence rules for simplification ***) + +(*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) +fun iff_tac prems i = + resolve_tac (prems RL [iffE]) i THEN + REPEAT1 (eresolve_tac [asm_rl,mp] i); + +val conj_cong = prove_goal IFOLP.thy + "[| p:P <-> P'; !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P&Q) <-> (P'&Q')" + (fn prems => + [ (cut_facts_tac prems 1), + (REPEAT (ares_tac [iffI,conjI] 1 + ORELSE eresolve_tac [iffE,conjE,mp] 1 + ORELSE iff_tac prems 1)) ]); + +val disj_cong = prove_goal IFOLP.thy + "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')" + (fn prems => + [ (cut_facts_tac prems 1), + (REPEAT (eresolve_tac [iffE,disjE,disjI1,disjI2] 1 + ORELSE ares_tac [iffI] 1 + ORELSE mp_tac 1)) ]); + +val imp_cong = prove_goal IFOLP.thy + "[| p:P <-> P'; !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P-->Q) <-> (P'-->Q')" + (fn prems => + [ (cut_facts_tac prems 1), + (REPEAT (ares_tac [iffI,impI] 1 + ORELSE eresolve_tac [iffE] 1 + ORELSE mp_tac 1 ORELSE iff_tac prems 1)) ]); + +val iff_cong = prove_goal IFOLP.thy + "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')" + (fn prems => + [ (cut_facts_tac prems 1), + (REPEAT (eresolve_tac [iffE] 1 + ORELSE ares_tac [iffI] 1 + ORELSE mp_tac 1)) ]); + +val not_cong = prove_goal IFOLP.thy + "p:P <-> P' ==> ?p:~P <-> ~P'" + (fn prems => + [ (cut_facts_tac prems 1), + (REPEAT (ares_tac [iffI,notI] 1 + ORELSE mp_tac 1 + ORELSE eresolve_tac [iffE,notE] 1)) ]); + +val all_cong = prove_goal IFOLP.thy + "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(ALL x.P(x)) <-> (ALL x.Q(x))" + (fn prems => + [ (REPEAT (ares_tac [iffI,allI] 1 + ORELSE mp_tac 1 + ORELSE eresolve_tac [allE] 1 ORELSE iff_tac prems 1)) ]); + +val ex_cong = prove_goal IFOLP.thy + "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX x.P(x)) <-> (EX x.Q(x))" + (fn prems => + [ (REPEAT (eresolve_tac [exE] 1 ORELSE ares_tac [iffI,exI] 1 + ORELSE mp_tac 1 + ORELSE iff_tac prems 1)) ]); + +(*NOT PROVED +val ex1_cong = prove_goal IFOLP.thy + "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))" + (fn prems => + [ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 + ORELSE mp_tac 1 + ORELSE iff_tac prems 1)) ]); +*) + +(*** Equality rules ***) + +val refl = ieqI; + +val subst = prove_goal IFOLP.thy "[| p:a=b; q:P(a) |] ==> ?p : P(b)" + (fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1), + rtac impI 1, atac 1 ]); + +val sym = prove_goal IFOLP.thy "q:a=b ==> ?c:b=a" + (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]); + +val trans = prove_goal IFOLP.thy "[| p:a=b; q:b=c |] ==> ?d:a=c" + (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]); + +(** ~ b=a ==> ~ a=b **) +val not_sym = prove_goal IFOLP.thy "p:~ b=a ==> ?q:~ a=b" + (fn [prem] => [ (rtac (prem RS contrapos) 1), (etac sym 1) ]); + +(*calling "standard" reduces maxidx to 0*) +val ssubst = standard (sym RS subst); + +(*A special case of ex1E that would otherwise need quantifier expansion*) +val ex1_equalsE = prove_goal IFOLP.thy + "[| p:EX! x.P(x); q:P(a); r:P(b) |] ==> ?d:a=b" + (fn prems => + [ (cut_facts_tac prems 1), + (etac ex1E 1), + (rtac trans 1), + (rtac sym 2), + (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]); + +(** Polymorphic congruence rules **) + +val subst_context = prove_goal IFOLP.thy + "[| p:a=b |] ==> ?d:t(a)=t(b)" + (fn prems=> + [ (resolve_tac (prems RL [ssubst]) 1), + (resolve_tac [refl] 1) ]); + +val subst_context2 = prove_goal IFOLP.thy + "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)" + (fn prems=> + [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); + +val subst_context3 = prove_goal IFOLP.thy + "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)" + (fn prems=> + [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); + +(*Useful with eresolve_tac for proving equalties from known equalities. + a = b + | | + c = d *) +val box_equals = prove_goal IFOLP.thy + "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d" + (fn prems=> + [ (resolve_tac [trans] 1), + (resolve_tac [trans] 1), + (resolve_tac [sym] 1), + (REPEAT (resolve_tac prems 1)) ]); + +(*Dual of box_equals: for proving equalities backwards*) +val simp_equals = prove_goal IFOLP.thy + "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b" + (fn prems=> + [ (resolve_tac [trans] 1), + (resolve_tac [trans] 1), + (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]); + +(** Congruence rules for predicate letters **) + +val pred1_cong = prove_goal IFOLP.thy + "p:a=a' ==> ?p:P(a) <-> P(a')" + (fn prems => + [ (cut_facts_tac prems 1), + (rtac iffI 1), + (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); + +val pred2_cong = prove_goal IFOLP.thy + "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')" + (fn prems => + [ (cut_facts_tac prems 1), + (rtac iffI 1), + (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); + +val pred3_cong = prove_goal IFOLP.thy + "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')" + (fn prems => + [ (cut_facts_tac prems 1), + (rtac iffI 1), + (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); + +(*special cases for free variables P, Q, R, S -- up to 3 arguments*) + +val pred_congs = + flat (map (fn c => + map (fn th => read_instantiate [("P",c)] th) + [pred1_cong,pred2_cong,pred3_cong]) + (explode"PQRS")); + +(*special case for the equality predicate!*) +val eq_cong = read_instantiate [("P","op =")] pred2_cong; + + +(*** Simplifications of assumed implications. + Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE + used with mp_tac (restricted to atomic formulae) is COMPLETE for + intuitionistic propositional logic. See + R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic + (preprint, University of St Andrews, 1991) ***) + +val conj_impE = prove_goal IFOLP.thy + "[| p:(P&Q)-->S; !!x.x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R" + (fn major::prems=> + [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]); + +val disj_impE = prove_goal IFOLP.thy + "[| p:(P|Q)-->S; !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R" + (fn major::prems=> + [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]); + +(*Simplifies the implication. Classical version is stronger. + Still UNSAFE since Q must be provable -- backtracking needed. *) +val imp_impE = prove_goal IFOLP.thy + "[| p:(P-->Q)-->S; !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q; !!x.x:S ==> r(x):R |] ==> \ +\ ?p:R" + (fn major::prems=> + [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]); + +(*Simplifies the implication. Classical version is stronger. + Still UNSAFE since ~P must be provable -- backtracking needed. *) +val not_impE = prove_goal IFOLP.thy + "[| p:~P --> S; !!y.y:P ==> q(y):False; !!y.y:S ==> r(y):R |] ==> ?p:R" + (fn major::prems=> + [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]); + +(*Simplifies the implication. UNSAFE. *) +val iff_impE = prove_goal IFOLP.thy + "[| p:(P<->Q)-->S; !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q; \ +\ !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P; !!x.x:S ==> s(x):R |] ==> ?p:R" + (fn major::prems=> + [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]); + +(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) +val all_impE = prove_goal IFOLP.thy + "[| p:(ALL x.P(x))-->S; !!x.q:P(x); !!y.y:S ==> r(y):R |] ==> ?p:R" + (fn major::prems=> + [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]); + +(*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) +val ex_impE = prove_goal IFOLP.thy + "[| p:(EX x.P(x))-->S; !!y.y:P(a)-->S ==> q(y):R |] ==> ?p:R" + (fn major::prems=> + [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]); + +end; + +open IFOLP_Lemmas; +