diff -r 000000000000 -r a5a9c433f639 src/ZF/Epsilon.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/Epsilon.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,325 @@ +(* Title: ZF/epsilon.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +For epsilon.thy. Epsilon induction and recursion +*) + +open Epsilon; + +(*** Basic closure properties ***) + +goalw Epsilon.thy [eclose_def] "A <= eclose(A)"; +by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1); +br (nat_0I RS UN_upper) 1; +val arg_subset_eclose = result(); + +val arg_into_eclose = arg_subset_eclose RS subsetD; + +goalw Epsilon.thy [eclose_def,Transset_def] "Transset(eclose(A))"; +by (rtac (subsetI RS ballI) 1); +by (etac UN_E 1); +by (rtac (nat_succI RS UN_I) 1); +by (assume_tac 1); +by (etac (nat_rec_succ RS ssubst) 1); +by (etac UnionI 1); +by (assume_tac 1); +val Transset_eclose = result(); + +(* x : eclose(A) ==> x <= eclose(A) *) +val eclose_subset = + standard (rewrite_rule [Transset_def] Transset_eclose RS bspec); + +(* [| A : eclose(B); c : A |] ==> c : eclose(B) *) +val ecloseD = standard (eclose_subset RS subsetD); + +val arg_in_eclose_sing = arg_subset_eclose RS singleton_subsetD; +val arg_into_eclose_sing = arg_in_eclose_sing RS ecloseD; + +(* This is epsilon-induction for eclose(A); see also eclose_induct_down... + [| a: eclose(A); !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x) + |] ==> P(a) +*) +val eclose_induct = standard (Transset_eclose RSN (2, Transset_induct)); + +(*Epsilon induction*) +val prems = goal Epsilon.thy + "[| !!x. ALL y:x. P(y) ==> P(x) |] ==> P(a)"; +by (rtac (arg_in_eclose_sing RS eclose_induct) 1); +by (eresolve_tac prems 1); +val eps_induct = result(); + +(*Perform epsilon-induction on i. *) +fun eps_ind_tac a = + EVERY' [res_inst_tac [("a",a)] eps_induct, + rename_last_tac a ["1"]]; + + +(*** Leastness of eclose ***) + +(** eclose(A) is the least transitive set including A as a subset. **) + +goalw Epsilon.thy [Transset_def] + "!!X A n. [| Transset(X); A<=X; n: nat |] ==> \ +\ nat_rec(n, A, %m r. Union(r)) <= X"; +by (etac nat_induct 1); +by (ASM_SIMP_TAC (ZF_ss addrews [nat_rec_0]) 1); +by (ASM_SIMP_TAC (ZF_ss addrews [nat_rec_succ]) 1); +by (fast_tac ZF_cs 1); +val eclose_least_lemma = result(); + +goalw Epsilon.thy [eclose_def] + "!!X A. [| Transset(X); A<=X |] ==> eclose(A) <= X"; +br (eclose_least_lemma RS UN_least) 1; +by (REPEAT (assume_tac 1)); +val eclose_least = result(); + +(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*) +val [major,base,step] = goal Epsilon.thy + "[| a: eclose(b); \ +\ !!y. [| y: b |] ==> P(y); \ +\ !!y z. [| y: eclose(b); P(y); z: y |] ==> P(z) \ +\ |] ==> P(a)"; +by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1); +by (rtac (CollectI RS subsetI) 2); +by (etac (arg_subset_eclose RS subsetD) 2); +by (etac base 2); +by (rewtac Transset_def); +by (fast_tac (ZF_cs addEs [step,ecloseD]) 1); +val eclose_induct_down = result(); + +goal Epsilon.thy "!!X. Transset(X) ==> eclose(X) = X"; +be ([eclose_least, arg_subset_eclose] MRS equalityI) 1; +br subset_refl 1; +val Transset_eclose_eq_arg = result(); + + +(*** Epsilon recursion ***) + +(*Unused...*) +goal Epsilon.thy "!!A B C. [| A: eclose(B); B: eclose(C) |] ==> A: eclose(C)"; +by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1); +by (REPEAT (assume_tac 1)); +val mem_eclose_trans = result(); + +(*Variant of the previous lemma in a useable form for the sequel*) +goal Epsilon.thy + "!!A B C. [| A: eclose({B}); B: eclose({C}) |] ==> A: eclose({C})"; +by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1); +by (REPEAT (assume_tac 1)); +val mem_eclose_sing_trans = result(); + +goalw Epsilon.thy [Transset_def] + "!!i j. [| Transset(i); j:i |] ==> Memrel(i)-``{j} = j"; +by (fast_tac (eq_cs addSIs [MemrelI] addSEs [MemrelE]) 1); +val under_Memrel = result(); + +(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *) +val under_Memrel_eclose = Transset_eclose RS under_Memrel; + +val wfrec_ssubst = standard (wf_Memrel RS wfrec RS ssubst); + +val [kmemj,jmemi] = goal Epsilon.thy + "[| k:eclose({j}); j:eclose({i}) |] ==> \ +\ wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)"; +by (rtac (kmemj RS eclose_induct) 1); +by (rtac wfrec_ssubst 1); +by (rtac wfrec_ssubst 1); +by (ASM_SIMP_TAC (wf_ss addrews [under_Memrel_eclose, + jmemi RSN (2,mem_eclose_sing_trans)]) 1); +val wfrec_eclose_eq = result(); + +val [prem] = goal Epsilon.thy + "k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)"; +by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1); +by (rtac (prem RS arg_into_eclose_sing) 1); +val wfrec_eclose_eq2 = result(); + +goalw Epsilon.thy [transrec_def] + "transrec(a,H) = H(a, lam x:a. transrec(x,H))"; +by (rtac wfrec_ssubst 1); +by (SIMP_TAC (wf_ss addrews [wfrec_eclose_eq2, + arg_in_eclose_sing, under_Memrel_eclose]) 1); +val transrec = result(); + +(*Avoids explosions in proofs; resolve it with a meta-level definition.*) +val rew::prems = goal Epsilon.thy + "[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))"; +by (rewtac rew); +by (REPEAT (resolve_tac (prems@[transrec]) 1)); +val def_transrec = result(); + +val prems = goal Epsilon.thy + "[| !!x u. [| x:eclose({a}); u: Pi(x,B) |] ==> H(x,u) : B(x) \ +\ |] ==> transrec(a,H) : B(a)"; +by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1); +by (rtac (transrec RS ssubst) 1); +by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1)); +val transrec_type = result(); + +goal Epsilon.thy "!!i. Ord(i) ==> eclose({i}) <= succ(i)"; +by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1); +by (rtac (succI1 RS singleton_subsetI) 1); +val eclose_sing_Ord = result(); + +val prems = goal Epsilon.thy + "[| j: i; Ord(i); \ +\ !!x u. [| x: i; u: Pi(x,B) |] ==> H(x,u) : B(x) \ +\ |] ==> transrec(j,H) : B(j)"; +by (rtac transrec_type 1); +by (resolve_tac prems 1); +by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1); +by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1)); +val Ord_transrec_type = result(); + +(*Congruence*) +val prems = goalw Epsilon.thy [transrec_def,Memrel_def] + "[| a=a'; !!x u. H(x,u)=H'(x,u) |] ==> transrec(a,H)=transrec(a',H')"; +val transrec_ss = + ZF_ss addcongs ([wfrec_cong] @ mk_congs Epsilon.thy ["eclose"]) + addrews (prems RL [sym]); +by (SIMP_TAC transrec_ss 1); +val transrec_cong = result(); + +(*** Rank ***) + +val ord_ss = ZF_ss addcongs (mk_congs Ord.thy ["Ord"]); + +(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*) +goal Epsilon.thy "rank(a) = (UN y:a. succ(rank(y)))"; +by (rtac (rank_def RS def_transrec RS ssubst) 1); +by (SIMP_TAC ZF_ss 1); +val rank = result(); + +goal Epsilon.thy "Ord(rank(a))"; +by (eps_ind_tac "a" 1); +by (rtac (rank RS ssubst) 1); +by (rtac (Ord_succ RS Ord_UN) 1); +by (etac bspec 1); +by (assume_tac 1); +val Ord_rank = result(); + +val [major] = goal Epsilon.thy "Ord(i) ==> rank(i) = i"; +by (rtac (major RS trans_induct) 1); +by (rtac (rank RS ssubst) 1); +by (ASM_SIMP_TAC (ord_ss addrews [Ord_equality]) 1); +val rank_of_Ord = result(); + +val [prem] = goal Epsilon.thy "a:b ==> rank(a) : rank(b)"; +by (res_inst_tac [("a1","b")] (rank RS ssubst) 1); +by (rtac (prem RS UN_I) 1); +by (rtac succI1 1); +val rank_lt = result(); + +val [major] = goal Epsilon.thy "a: eclose(b) ==> rank(a) : rank(b)"; +by (rtac (major RS eclose_induct_down) 1); +by (etac rank_lt 1); +by (etac (rank_lt RS Ord_trans) 1); +by (assume_tac 1); +by (rtac Ord_rank 1); +val eclose_rank_lt = result(); + +goal Epsilon.thy "!!a b. a<=b ==> rank(a) <= rank(b)"; +by (rtac (rank RS ssubst) 1); +by (rtac (rank RS ssubst) 1); +by (etac UN_mono 1); +by (rtac subset_refl 1); +val rank_mono = result(); + +goal Epsilon.thy "rank(Pow(a)) = succ(rank(a))"; +by (rtac (rank RS trans) 1); +by (rtac equalityI 1); +by (fast_tac ZF_cs 2); +by (rtac UN_least 1); +by (etac (PowD RS rank_mono RS Ord_succ_mono) 1); +by (rtac Ord_rank 1); +by (rtac Ord_rank 1); +val rank_Pow = result(); + +goal Epsilon.thy "rank(0) = 0"; +by (rtac (rank RS trans) 1); +by (fast_tac (ZF_cs addSIs [equalityI]) 1); +val rank_0 = result(); + +goal Epsilon.thy "rank(succ(x)) = succ(rank(x))"; +by (rtac (rank RS trans) 1); +br ([UN_least, succI1 RS UN_upper] MRS equalityI) 1; +be succE 1; +by (fast_tac ZF_cs 1); +by (REPEAT (ares_tac [Ord_succ_mono,Ord_rank,OrdmemD,rank_lt] 1)); +val rank_succ = result(); + +goal Epsilon.thy "rank(Union(A)) = (UN x:A. rank(x))"; +by (rtac equalityI 1); +by (rtac (rank_mono RS UN_least) 2); +by (etac Union_upper 2); +by (rtac (rank RS ssubst) 1); +by (rtac UN_least 1); +by (etac UnionE 1); +by (rtac subset_trans 1); +by (etac (RepFunI RS Union_upper) 2); +by (etac (rank_lt RS Ord_succ_subsetI) 1); +by (rtac Ord_rank 1); +val rank_Union = result(); + +goal Epsilon.thy "rank(eclose(a)) = rank(a)"; +by (rtac equalityI 1); +by (rtac (arg_subset_eclose RS rank_mono) 2); +by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1); +by (rtac UN_least 1); +by (etac ([eclose_rank_lt, Ord_rank] MRS Ord_succ_subsetI) 1); +val rank_eclose = result(); + +(* [| i: j; j: rank(a) |] ==> i: rank(a) *) +val rank_trans = Ord_rank RSN (3, Ord_trans); + +goalw Epsilon.thy [Pair_def] "rank(a) : rank()"; +by (rtac (consI1 RS rank_lt RS Ord_trans) 1); +by (rtac (consI1 RS consI2 RS rank_lt) 1); +by (rtac Ord_rank 1); +val rank_pair1 = result(); + +goalw Epsilon.thy [Pair_def] "rank(b) : rank()"; +by (rtac (consI1 RS consI2 RS rank_lt RS Ord_trans) 1); +by (rtac (consI1 RS consI2 RS rank_lt) 1); +by (rtac Ord_rank 1); +val rank_pair2 = result(); + +goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inl_def] "rank(a) : rank(Inl(a))"; +by (rtac rank_pair2 1); +val rank_Inl = result(); + +goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inr_def] "rank(a) : rank(Inr(a))"; +by (rtac rank_pair2 1); +val rank_Inr = result(); + +val [major] = goal Epsilon.thy "i: rank(a) ==> (EX x:a. i<=rank(x))"; +by (resolve_tac ([major] RL [rank RS subst] RL [UN_E]) 1); +by (rtac bexI 1); +by (etac member_succD 1); +by (rtac Ord_rank 1); +by (assume_tac 1); +val rank_implies_mem = result(); + + +(*** Corollaries of leastness ***) + +goal Epsilon.thy "!!A B. A:B ==> eclose(A)<=eclose(B)"; +by (rtac (Transset_eclose RS eclose_least) 1); +by (etac (arg_into_eclose RS eclose_subset) 1); +val mem_eclose_subset = result(); + +goal Epsilon.thy "!!A B. A<=B ==> eclose(A) <= eclose(B)"; +by (rtac (Transset_eclose RS eclose_least) 1); +by (etac subset_trans 1); +by (rtac arg_subset_eclose 1); +val eclose_mono = result(); + +(** Idempotence of eclose **) + +goal Epsilon.thy "eclose(eclose(A)) = eclose(A)"; +by (rtac equalityI 1); +by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1); +by (rtac arg_subset_eclose 1); +val eclose_idem = result();