diff -r 000000000000 -r a5a9c433f639 src/ZF/Ord.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/Ord.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,410 @@ +(* Title: ZF/ordinal.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +For ordinal.thy. Ordinals in Zermelo-Fraenkel Set Theory +*) + +open Ord; + +(*** Rules for Transset ***) + +(** Two neat characterisations of Transset **) + +goalw Ord.thy [Transset_def] "Transset(A) <-> A<=Pow(A)"; +by (fast_tac ZF_cs 1); +val Transset_iff_Pow = result(); + +goalw Ord.thy [Transset_def] "Transset(A) <-> Union(succ(A)) = A"; +by (fast_tac (eq_cs addSEs [equalityE]) 1); +val Transset_iff_Union_succ = result(); + +(** Consequences of downwards closure **) + +goalw Ord.thy [Transset_def] + "!!C a b. [| Transset(C); {a,b}: C |] ==> a:C & b: C"; +by (fast_tac ZF_cs 1); +val Transset_doubleton_D = result(); + +val [prem1,prem2] = goalw Ord.thy [Pair_def] + "[| Transset(C); : C |] ==> a:C & b: C"; +by (cut_facts_tac [prem2] 1); +by (fast_tac (ZF_cs addSDs [prem1 RS Transset_doubleton_D]) 1); +val Transset_Pair_D = result(); + +val prem1::prems = goal Ord.thy + "[| Transset(C); A*B <= C; b: B |] ==> A <= C"; +by (cut_facts_tac prems 1); +by (fast_tac (ZF_cs addSDs [prem1 RS Transset_Pair_D]) 1); +val Transset_includes_domain = result(); + +val prem1::prems = goal Ord.thy + "[| Transset(C); A*B <= C; a: A |] ==> B <= C"; +by (cut_facts_tac prems 1); +by (fast_tac (ZF_cs addSDs [prem1 RS Transset_Pair_D]) 1); +val Transset_includes_range = result(); + +val [prem1,prem2] = goalw (merge_theories(Ord.thy,Sum.thy)) [sum_def] + "[| Transset(C); A+B <= C |] ==> A <= C & B <= C"; +br (prem2 RS (Un_subset_iff RS iffD1) RS conjE) 1; +by (REPEAT (etac (prem1 RS Transset_includes_range) 1 + ORELSE resolve_tac [conjI, singletonI] 1)); +val Transset_includes_summands = result(); + +val [prem] = goalw (merge_theories(Ord.thy,Sum.thy)) [sum_def] + "Transset(C) ==> (A+B) Int C <= (A Int C) + (B Int C)"; +br (Int_Un_distrib RS ssubst) 1; +by (fast_tac (ZF_cs addSDs [prem RS Transset_Pair_D]) 1); +val Transset_sum_Int_subset = result(); + +(** Closure properties **) + +goalw Ord.thy [Transset_def] "Transset(0)"; +by (fast_tac ZF_cs 1); +val Transset_0 = result(); + +goalw Ord.thy [Transset_def] + "!!i j. [| Transset(i); Transset(j) |] ==> Transset(i Un j)"; +by (fast_tac ZF_cs 1); +val Transset_Un = result(); + +goalw Ord.thy [Transset_def] + "!!i j. [| Transset(i); Transset(j) |] ==> Transset(i Int j)"; +by (fast_tac ZF_cs 1); +val Transset_Int = result(); + +goalw Ord.thy [Transset_def] "!!i. Transset(i) ==> Transset(succ(i))"; +by (fast_tac ZF_cs 1); +val Transset_succ = result(); + +goalw Ord.thy [Transset_def] "!!i. Transset(i) ==> Transset(Pow(i))"; +by (fast_tac ZF_cs 1); +val Transset_Pow = result(); + +goalw Ord.thy [Transset_def] "!!A. Transset(A) ==> Transset(Union(A))"; +by (fast_tac ZF_cs 1); +val Transset_Union = result(); + +val [Transprem] = goalw Ord.thy [Transset_def] + "[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))"; +by (fast_tac (ZF_cs addEs [Transprem RS bspec RS subsetD]) 1); +val Transset_Union_family = result(); + +val [prem,Transprem] = goalw Ord.thy [Transset_def] + "[| j:A; !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))"; +by (cut_facts_tac [prem] 1); +by (fast_tac (ZF_cs addEs [Transprem RS bspec RS subsetD]) 1); +val Transset_Inter_family = result(); + +(*** Natural Deduction rules for Ord ***) + +val prems = goalw Ord.thy [Ord_def] + "[| Transset(i); !!x. x:i ==> Transset(x) |] ==> Ord(i) "; +by (REPEAT (ares_tac (prems@[ballI,conjI]) 1)); +val OrdI = result(); + +val [major] = goalw Ord.thy [Ord_def] + "Ord(i) ==> Transset(i)"; +by (rtac (major RS conjunct1) 1); +val Ord_is_Transset = result(); + +val [major,minor] = goalw Ord.thy [Ord_def] + "[| Ord(i); j:i |] ==> Transset(j) "; +by (rtac (minor RS (major RS conjunct2 RS bspec)) 1); +val Ord_contains_Transset = result(); + +(*** Lemmas for ordinals ***) + +goalw Ord.thy [Ord_def,Transset_def] "!!i j. [| Ord(i); j:i |] ==> Ord(j) "; +by (fast_tac ZF_cs 1); +val Ord_in_Ord = result(); + +goal Ord.thy "!!i j. [| Ord(i); Transset(j); j<=i |] ==> Ord(j)"; +by (REPEAT (ares_tac [OrdI] 1 + ORELSE eresolve_tac [Ord_contains_Transset, subsetD] 1)); +val Ord_subset_Ord = result(); + +goalw Ord.thy [Ord_def,Transset_def] "!!i j. [| j:i; Ord(i) |] ==> j<=i"; +by (fast_tac ZF_cs 1); +val OrdmemD = result(); + +goal Ord.thy "!!i j k. [| i:j; j:k; Ord(k) |] ==> i:k"; +by (REPEAT (ares_tac [OrdmemD RS subsetD] 1)); +val Ord_trans = result(); + +goal Ord.thy "!!i j. [| i:j; Ord(j) |] ==> succ(i) <= j"; +by (REPEAT (ares_tac [OrdmemD RSN (2,succ_subsetI)] 1)); +val Ord_succ_subsetI = result(); + + +(*** The construction of ordinals: 0, succ, Union ***) + +goal Ord.thy "Ord(0)"; +by (REPEAT (ares_tac [OrdI,Transset_0] 1 ORELSE etac emptyE 1)); +val Ord_0 = result(); + +goal Ord.thy "!!i. Ord(i) ==> Ord(succ(i))"; +by (REPEAT (ares_tac [OrdI,Transset_succ] 1 + ORELSE eresolve_tac [succE,ssubst,Ord_is_Transset, + Ord_contains_Transset] 1)); +val Ord_succ = result(); + +val nonempty::prems = goal Ord.thy + "[| j:A; !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))"; +by (rtac (nonempty RS Transset_Inter_family RS OrdI) 1); +by (rtac Ord_is_Transset 1); +by (REPEAT (ares_tac ([Ord_contains_Transset,nonempty]@prems) 1 + ORELSE etac InterD 1)); +val Ord_Inter = result(); + +val jmemA::prems = goal Ord.thy + "[| j:A; !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))"; +by (rtac (jmemA RS RepFunI RS Ord_Inter) 1); +by (etac RepFunE 1); +by (etac ssubst 1); +by (eresolve_tac prems 1); +val Ord_INT = result(); + + +(*** Natural Deduction rules for Memrel ***) + +goalw Ord.thy [Memrel_def] " : Memrel(A) <-> a:b & a:A & b:A"; +by (fast_tac ZF_cs 1); +val Memrel_iff = result(); + +val prems = goal Ord.thy "[| a: b; a: A; b: A |] ==> : Memrel(A)"; +by (REPEAT (resolve_tac (prems@[conjI, Memrel_iff RS iffD2]) 1)); +val MemrelI = result(); + +val [major,minor] = goal Ord.thy + "[| : Memrel(A); \ +\ [| a: A; b: A; a:b |] ==> P \ +\ |] ==> P"; +by (rtac (major RS (Memrel_iff RS iffD1) RS conjE) 1); +by (etac conjE 1); +by (rtac minor 1); +by (REPEAT (assume_tac 1)); +val MemrelE = result(); + +(*The membership relation (as a set) is well-founded. + Proof idea: show A<=B by applying the foundation axiom to A-B *) +goalw Ord.thy [wf_def] "wf(Memrel(A))"; +by (EVERY1 [rtac (foundation RS disjE RS allI), + etac disjI1, + etac bexE, + rtac (impI RS allI RS bexI RS disjI2), + etac MemrelE, + etac bspec, + REPEAT o assume_tac]); +val wf_Memrel = result(); + +(*** Transfinite induction ***) + +(*Epsilon induction over a transitive set*) +val major::prems = goalw Ord.thy [Transset_def] + "[| i: k; Transset(k); \ +\ !!x.[| x: k; ALL y:x. P(y) |] ==> P(x) \ +\ |] ==> P(i)"; +by (rtac (major RS (wf_Memrel RS wf_induct2)) 1); +by (fast_tac (ZF_cs addEs [MemrelE]) 1); +by (resolve_tac prems 1); +by (assume_tac 1); +by (cut_facts_tac prems 1); +by (fast_tac (ZF_cs addIs [MemrelI]) 1); +val Transset_induct = result(); + +(*Induction over an ordinal*) +val Ord_induct = Ord_is_Transset RSN (2, Transset_induct); + +(*Induction over the class of ordinals -- a useful corollary of Ord_induct*) +val [major,indhyp] = goal Ord.thy + "[| Ord(i); \ +\ !!x.[| Ord(x); ALL y:x. P(y) |] ==> P(x) \ +\ |] ==> P(i)"; +by (rtac (major RS Ord_succ RS (succI1 RS Ord_induct)) 1); +by (rtac indhyp 1); +by (rtac (major RS Ord_succ RS Ord_in_Ord) 1); +by (REPEAT (assume_tac 1)); +val trans_induct = result(); + +(*Perform induction on i, then prove the Ord(i) subgoal using prems. *) +fun trans_ind_tac a prems i = + EVERY [res_inst_tac [("i",a)] trans_induct i, + rename_last_tac a ["1"] (i+1), + ares_tac prems i]; + + +(*** Fundamental properties of the epsilon ordering (< on ordinals) ***) + +(*Finds contradictions for the following proof*) +val Ord_trans_tac = EVERY' [etac notE, etac Ord_trans, REPEAT o atac]; + +(** Proving that "member" is a linear ordering on the ordinals **) + +val prems = goal Ord.thy + "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)"; +by (trans_ind_tac "i" prems 1); +by (rtac (impI RS allI) 1); +by (trans_ind_tac "j" [] 1); +by (DEPTH_SOLVE (swap_res_tac [disjCI,equalityI,subsetI] 1 + ORELSE ball_tac 1 + ORELSE eresolve_tac [impE,disjE,allE] 1 + ORELSE hyp_subst_tac 1 + ORELSE Ord_trans_tac 1)); +val Ord_linear_lemma = result(); + +val ordi::ordj::prems = goal Ord.thy + "[| Ord(i); Ord(j); i:j ==> P; i=j ==> P; j:i ==> P |] \ +\ ==> P"; +by (rtac (ordi RS Ord_linear_lemma RS spec RS impE) 1); +by (rtac ordj 1); +by (REPEAT (eresolve_tac (prems@[asm_rl,disjE]) 1)); +val Ord_linear = result(); + +val prems = goal Ord.thy + "[| Ord(i); Ord(j); i<=j ==> P; j<=i ==> P |] \ +\ ==> P"; +by (res_inst_tac [("i","i"),("j","j")] Ord_linear 1); +by (DEPTH_SOLVE (ares_tac (prems@[subset_refl]) 1 + ORELSE eresolve_tac [asm_rl,OrdmemD,ssubst] 1)); +val Ord_subset = result(); + +goal Ord.thy "!!i j. [| j<=i; ~ i<=j; Ord(i); Ord(j) |] ==> j:i"; +by (etac Ord_linear 1); +by (REPEAT (ares_tac [subset_refl] 1 + ORELSE eresolve_tac [notE,OrdmemD,ssubst] 1)); +val Ord_member = result(); + +val [prem] = goal Ord.thy "Ord(i) ==> 0: succ(i)"; +by (rtac (empty_subsetI RS Ord_member) 1); +by (fast_tac ZF_cs 1); +by (rtac (prem RS Ord_succ) 1); +by (rtac Ord_0 1); +val Ord_0_mem_succ = result(); + +goal Ord.thy "!!i j. [| Ord(i); Ord(j) |] ==> j:i <-> j<=i & ~(i<=j)"; +by (rtac iffI 1); +by (rtac conjI 1); +by (etac OrdmemD 1); +by (rtac (mem_anti_refl RS notI) 2); +by (etac subsetD 2); +by (REPEAT (eresolve_tac [asm_rl, conjE, Ord_member] 1)); +val Ord_member_iff = result(); + +goal Ord.thy "!!i. Ord(i) ==> 0:i <-> ~ i=0"; +be (Ord_0 RSN (2,Ord_member_iff) RS iff_trans) 1; +by (fast_tac eq_cs 1); +val Ord_0_member_iff = result(); + +(** For ordinals, i: succ(j) means 'less-than or equals' **) + +goal Ord.thy "!!i j. [| j<=i; Ord(i); Ord(j) |] ==> j : succ(i)"; +by (rtac Ord_member 1); +by (REPEAT (ares_tac [Ord_succ] 3)); +by (rtac (mem_anti_refl RS notI) 2); +by (etac subsetD 2); +by (ALLGOALS (fast_tac ZF_cs)); +val member_succI = result(); + +goalw Ord.thy [Transset_def,Ord_def] + "!!i j. [| i : succ(j); Ord(j) |] ==> i<=j"; +by (fast_tac ZF_cs 1); +val member_succD = result(); + +goal Ord.thy "!!i j. [| Ord(i); Ord(j) |] ==> j:succ(i) <-> j<=i"; +by (fast_tac (subset_cs addSEs [member_succI, member_succD]) 1); +val member_succ_iff = result(); + +goal Ord.thy + "!!i j. [| Ord(i); Ord(j) |] ==> i<=succ(j) <-> i<=j | i=succ(j)"; +by (ASM_SIMP_TAC (ZF_ss addrews [member_succ_iff RS iff_sym, Ord_succ]) 1); +by (fast_tac ZF_cs 1); +val subset_succ_iff = result(); + +goal Ord.thy "!!i j. [| i:succ(j); j:k; Ord(k) |] ==> i:k"; +by (fast_tac (ZF_cs addEs [Ord_trans]) 1); +val Ord_trans1 = result(); + +goal Ord.thy "!!i j. [| i:j; j:succ(k); Ord(k) |] ==> i:k"; +by (fast_tac (ZF_cs addEs [Ord_trans]) 1); +val Ord_trans2 = result(); + +goal Ord.thy "!!i jk. [| i:j; j<=k; Ord(k) |] ==> i:k"; +by (fast_tac (ZF_cs addEs [Ord_trans]) 1); +val Ord_transsub2 = result(); + +goal Ord.thy "!!i j. [| i:j; Ord(j) |] ==> succ(i) : succ(j)"; +by (rtac member_succI 1); +by (REPEAT (ares_tac [subsetI,Ord_succ,Ord_in_Ord] 1 + ORELSE eresolve_tac [succE,Ord_trans,ssubst] 1)); +val succ_mem_succI = result(); + +goal Ord.thy "!!i j. [| succ(i) : succ(j); Ord(j) |] ==> i:j"; +by (REPEAT (eresolve_tac [asm_rl, make_elim member_succD, succ_subsetE] 1)); +val succ_mem_succE = result(); + +goal Ord.thy "!!i j. Ord(j) ==> succ(i) : succ(j) <-> i:j"; +by (REPEAT (ares_tac [iffI,succ_mem_succI,succ_mem_succE] 1)); +val succ_mem_succ_iff = result(); + +goal Ord.thy "!!i j. [| i<=j; Ord(i); Ord(j) |] ==> succ(i) <= succ(j)"; +by (rtac (member_succI RS succ_mem_succI RS member_succD) 1); +by (REPEAT (ares_tac [Ord_succ] 1)); +val Ord_succ_mono = result(); + +goal Ord.thy "!!i j k. [| i:k; j:k; Ord(k) |] ==> i Un j : k"; +by (res_inst_tac [("i","i"),("j","j")] Ord_subset 1); +by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1)); +by (ASM_SIMP_TAC (ZF_ss addrews [subset_Un_iff RS iffD1]) 1); +by (rtac (Un_commute RS ssubst) 1); +by (ASM_SIMP_TAC (ZF_ss addrews [subset_Un_iff RS iffD1]) 1); +val Ord_member_UnI = result(); + +goal Ord.thy "!!i j k. [| i:k; j:k; Ord(k) |] ==> i Int j : k"; +by (res_inst_tac [("i","i"),("j","j")] Ord_subset 1); +by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1)); +by (ASM_SIMP_TAC (ZF_ss addrews [subset_Int_iff RS iffD1]) 1); +by (rtac (Int_commute RS ssubst) 1); +by (ASM_SIMP_TAC (ZF_ss addrews [subset_Int_iff RS iffD1]) 1); +val Ord_member_IntI = result(); + + +(*** Results about limits ***) + +val prems = goal Ord.thy "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))"; +by (rtac (Ord_is_Transset RS Transset_Union_family RS OrdI) 1); +by (REPEAT (etac UnionE 1 ORELSE ares_tac ([Ord_contains_Transset]@prems) 1)); +val Ord_Union = result(); + +val prems = goal Ord.thy "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))"; +by (rtac Ord_Union 1); +by (etac RepFunE 1); +by (etac ssubst 1); +by (eresolve_tac prems 1); +val Ord_UN = result(); + +(*The upper bound must be a successor ordinal -- + consider that (UN i:nat.i)=nat although nat is an upper bound of each i*) +val [ordi,limit] = goal Ord.thy + "[| Ord(i); !!y. y:A ==> f(y): succ(i) |] ==> (UN y:A. f(y)) : succ(i)"; +by (rtac (member_succD RS UN_least RS member_succI) 1); +by (REPEAT (ares_tac [ordi, Ord_UN, ordi RS Ord_succ RS Ord_in_Ord, + limit] 1)); +val sup_least = result(); + +val [jmemi,ordi,limit] = goal Ord.thy + "[| j: i; Ord(i); !!y. y:A ==> f(y): j |] ==> (UN y:A. succ(f(y))) : i"; +by (cut_facts_tac [jmemi RS (ordi RS Ord_in_Ord)] 1); +by (rtac (sup_least RS Ord_trans2) 1); +by (REPEAT (ares_tac [jmemi, ordi, succ_mem_succI, limit] 1)); +val sup_least2 = result(); + +goal Ord.thy "!!i. Ord(i) ==> (UN y:i. succ(y)) = i"; +by (fast_tac (eq_cs addSEs [Ord_trans1]) 1); +val Ord_equality = result(); + +(*Holds for all transitive sets, not just ordinals*) +goal Ord.thy "!!i. Ord(i) ==> Union(i) <= i"; +by (fast_tac (ZF_cs addSEs [Ord_trans]) 1); +val Ord_Union_subset = result();