diff -r 000000000000 -r a5a9c433f639 src/ZF/Pair.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/Pair.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,153 @@ +(* Title: ZF/pair + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +Ordered pairs in Zermelo-Fraenkel Set Theory +*) + +(** Lemmas for showing that uniquely determines a and b **) + +val doubleton_iff = prove_goal ZF.thy + "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)" + (fn _=> [ (resolve_tac [extension RS iff_trans] 1), + (fast_tac upair_cs 1) ]); + +val Pair_iff = prove_goalw ZF.thy [Pair_def] + " = <-> a=c & b=d" + (fn _=> [ (SIMP_TAC (FOL_ss addrews [doubleton_iff]) 1), + (fast_tac FOL_cs 1) ]); + +val Pair_inject = standard (Pair_iff RS iffD1 RS conjE); + +val Pair_inject1 = prove_goal ZF.thy " = ==> a=c" + (fn [major]=> + [ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]); + +val Pair_inject2 = prove_goal ZF.thy " = ==> b=d" + (fn [major]=> + [ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]); + +val Pair_neq_0 = prove_goalw ZF.thy [Pair_def] "=0 ==> P" + (fn [major]=> + [ (rtac (major RS equalityD1 RS subsetD RS emptyE) 1), + (rtac consI1 1) ]); + +val Pair_neq_fst = prove_goalw ZF.thy [Pair_def] "=a ==> P" + (fn [major]=> + [ (rtac (consI1 RS mem_anti_sym RS FalseE) 1), + (rtac (major RS subst) 1), + (rtac consI1 1) ]); + +val Pair_neq_snd = prove_goalw ZF.thy [Pair_def] "=b ==> P" + (fn [major]=> + [ (rtac (consI1 RS consI2 RS mem_anti_sym RS FalseE) 1), + (rtac (major RS subst) 1), + (rtac (consI1 RS consI2) 1) ]); + + +(*** Sigma: Disjoint union of a family of sets + Generalizes Cartesian product ***) + +val SigmaI = prove_goalw ZF.thy [Sigma_def] + "[| a:A; b:B(a) |] ==> : Sigma(A,B)" + (fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]); + +(*The general elimination rule*) +val SigmaE = prove_goalw ZF.thy [Sigma_def] + "[| c: Sigma(A,B); \ +\ !!x y.[| x:A; y:B(x); c= |] ==> P \ +\ |] ==> P" + (fn major::prems=> + [ (cut_facts_tac [major] 1), + (REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]); + +(** Elimination of :A*B -- introduces no eigenvariables **) +val SigmaD1 = prove_goal ZF.thy " : Sigma(A,B) ==> a : A" + (fn [major]=> + [ (rtac (major RS SigmaE) 1), + (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]); + +val SigmaD2 = prove_goal ZF.thy " : Sigma(A,B) ==> b : B(a)" + (fn [major]=> + [ (rtac (major RS SigmaE) 1), + (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]); + +(*Also provable via + rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac) + THEN prune_params_tac) + (read_instantiate [("c","")] SigmaE); *) +val SigmaE2 = prove_goal ZF.thy + "[| : Sigma(A,B); \ +\ [| a:A; b:B(a) |] ==> P \ +\ |] ==> P" + (fn [major,minor]=> + [ (rtac minor 1), + (rtac (major RS SigmaD1) 1), + (rtac (major RS SigmaD2) 1) ]); + +val Sigma_cong = prove_goalw ZF.thy [Sigma_def] + "[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \ +\ Sigma(A,B) = Sigma(A',B')" + (fn prems=> [ (prove_cong_tac (prems@[RepFun_cong]) 1) ]); + +val Sigma_empty1 = prove_goal ZF.thy "Sigma(0,B) = 0" + (fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]); + +val Sigma_empty2 = prove_goal ZF.thy "A*0 = 0" + (fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]); + + +(*** Eliminator - split ***) + +val split = prove_goalw ZF.thy [split_def] + "split(%x y.c(x,y), ) = c(a,b)" + (fn _ => + [ (fast_tac (upair_cs addIs [the_equality] addEs [Pair_inject]) 1) ]); + +val split_type = prove_goal ZF.thy + "[| p:Sigma(A,B); \ +\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C() \ +\ |] ==> split(%x y.c(x,y), p) : C(p)" + (fn major::prems=> + [ (rtac (major RS SigmaE) 1), + (etac ssubst 1), + (REPEAT (ares_tac (prems @ [split RS ssubst]) 1)) ]); + +(*This congruence rule uses NO typing information...*) +val split_cong = prove_goalw ZF.thy [split_def] + "[| p=p'; !!x y.c(x,y) = c'(x,y) |] ==> \ +\ split(%x y.c(x,y), p) = split(%x y.c'(x,y), p')" + (fn prems=> [ (prove_cong_tac (prems@[the_cong]) 1) ]); + + +(*** conversions for fst and snd ***) + +val fst_conv = prove_goalw ZF.thy [fst_def] "fst() = a" + (fn _=> [ (rtac split 1) ]); + +val snd_conv = prove_goalw ZF.thy [snd_def] "snd() = b" + (fn _=> [ (rtac split 1) ]); + + +(*** split for predicates: result type o ***) + +goalw ZF.thy [fsplit_def] "!!R a b. R(a,b) ==> fsplit(R, )"; +by (REPEAT (ares_tac [refl,exI,conjI] 1)); +val fsplitI = result(); + +val major::prems = goalw ZF.thy [fsplit_def] + "[| fsplit(R,z); !!x y. [| z = ; R(x,y) |] ==> P |] ==> P"; +by (cut_facts_tac [major] 1); +by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1)); +val fsplitE = result(); + +goal ZF.thy "!!R a b. fsplit(R,) ==> R(a,b)"; +by (REPEAT (eresolve_tac [asm_rl,fsplitE,Pair_inject,ssubst] 1)); +val fsplitD = result(); + +val pair_cs = upair_cs + addSIs [SigmaI] + addSEs [SigmaE2, SigmaE, Pair_inject, make_elim succ_inject, + Pair_neq_0, sym RS Pair_neq_0, succ_neq_0, sym RS succ_neq_0]; +