diff -r 000000000000 -r a5a9c433f639 src/ZF/Pair.ML
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Pair.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,153 @@
+(* Title: ZF/pair
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1992 University of Cambridge
+
+Ordered pairs in Zermelo-Fraenkel Set Theory
+*)
+
+(** Lemmas for showing that uniquely determines a and b **)
+
+val doubleton_iff = prove_goal ZF.thy
+ "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
+ (fn _=> [ (resolve_tac [extension RS iff_trans] 1),
+ (fast_tac upair_cs 1) ]);
+
+val Pair_iff = prove_goalw ZF.thy [Pair_def]
+ " = <-> a=c & b=d"
+ (fn _=> [ (SIMP_TAC (FOL_ss addrews [doubleton_iff]) 1),
+ (fast_tac FOL_cs 1) ]);
+
+val Pair_inject = standard (Pair_iff RS iffD1 RS conjE);
+
+val Pair_inject1 = prove_goal ZF.thy " = ==> a=c"
+ (fn [major]=>
+ [ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);
+
+val Pair_inject2 = prove_goal ZF.thy " = ==> b=d"
+ (fn [major]=>
+ [ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);
+
+val Pair_neq_0 = prove_goalw ZF.thy [Pair_def] "=0 ==> P"
+ (fn [major]=>
+ [ (rtac (major RS equalityD1 RS subsetD RS emptyE) 1),
+ (rtac consI1 1) ]);
+
+val Pair_neq_fst = prove_goalw ZF.thy [Pair_def] "=a ==> P"
+ (fn [major]=>
+ [ (rtac (consI1 RS mem_anti_sym RS FalseE) 1),
+ (rtac (major RS subst) 1),
+ (rtac consI1 1) ]);
+
+val Pair_neq_snd = prove_goalw ZF.thy [Pair_def] "=b ==> P"
+ (fn [major]=>
+ [ (rtac (consI1 RS consI2 RS mem_anti_sym RS FalseE) 1),
+ (rtac (major RS subst) 1),
+ (rtac (consI1 RS consI2) 1) ]);
+
+
+(*** Sigma: Disjoint union of a family of sets
+ Generalizes Cartesian product ***)
+
+val SigmaI = prove_goalw ZF.thy [Sigma_def]
+ "[| a:A; b:B(a) |] ==> : Sigma(A,B)"
+ (fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]);
+
+(*The general elimination rule*)
+val SigmaE = prove_goalw ZF.thy [Sigma_def]
+ "[| c: Sigma(A,B); \
+\ !!x y.[| x:A; y:B(x); c= |] ==> P \
+\ |] ==> P"
+ (fn major::prems=>
+ [ (cut_facts_tac [major] 1),
+ (REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]);
+
+(** Elimination of :A*B -- introduces no eigenvariables **)
+val SigmaD1 = prove_goal ZF.thy " : Sigma(A,B) ==> a : A"
+ (fn [major]=>
+ [ (rtac (major RS SigmaE) 1),
+ (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);
+
+val SigmaD2 = prove_goal ZF.thy " : Sigma(A,B) ==> b : B(a)"
+ (fn [major]=>
+ [ (rtac (major RS SigmaE) 1),
+ (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);
+
+(*Also provable via
+ rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac)
+ THEN prune_params_tac)
+ (read_instantiate [("c","")] SigmaE); *)
+val SigmaE2 = prove_goal ZF.thy
+ "[| : Sigma(A,B); \
+\ [| a:A; b:B(a) |] ==> P \
+\ |] ==> P"
+ (fn [major,minor]=>
+ [ (rtac minor 1),
+ (rtac (major RS SigmaD1) 1),
+ (rtac (major RS SigmaD2) 1) ]);
+
+val Sigma_cong = prove_goalw ZF.thy [Sigma_def]
+ "[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \
+\ Sigma(A,B) = Sigma(A',B')"
+ (fn prems=> [ (prove_cong_tac (prems@[RepFun_cong]) 1) ]);
+
+val Sigma_empty1 = prove_goal ZF.thy "Sigma(0,B) = 0"
+ (fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);
+
+val Sigma_empty2 = prove_goal ZF.thy "A*0 = 0"
+ (fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);
+
+
+(*** Eliminator - split ***)
+
+val split = prove_goalw ZF.thy [split_def]
+ "split(%x y.c(x,y), ) = c(a,b)"
+ (fn _ =>
+ [ (fast_tac (upair_cs addIs [the_equality] addEs [Pair_inject]) 1) ]);
+
+val split_type = prove_goal ZF.thy
+ "[| p:Sigma(A,B); \
+\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C() \
+\ |] ==> split(%x y.c(x,y), p) : C(p)"
+ (fn major::prems=>
+ [ (rtac (major RS SigmaE) 1),
+ (etac ssubst 1),
+ (REPEAT (ares_tac (prems @ [split RS ssubst]) 1)) ]);
+
+(*This congruence rule uses NO typing information...*)
+val split_cong = prove_goalw ZF.thy [split_def]
+ "[| p=p'; !!x y.c(x,y) = c'(x,y) |] ==> \
+\ split(%x y.c(x,y), p) = split(%x y.c'(x,y), p')"
+ (fn prems=> [ (prove_cong_tac (prems@[the_cong]) 1) ]);
+
+
+(*** conversions for fst and snd ***)
+
+val fst_conv = prove_goalw ZF.thy [fst_def] "fst() = a"
+ (fn _=> [ (rtac split 1) ]);
+
+val snd_conv = prove_goalw ZF.thy [snd_def] "snd() = b"
+ (fn _=> [ (rtac split 1) ]);
+
+
+(*** split for predicates: result type o ***)
+
+goalw ZF.thy [fsplit_def] "!!R a b. R(a,b) ==> fsplit(R, )";
+by (REPEAT (ares_tac [refl,exI,conjI] 1));
+val fsplitI = result();
+
+val major::prems = goalw ZF.thy [fsplit_def]
+ "[| fsplit(R,z); !!x y. [| z = ; R(x,y) |] ==> P |] ==> P";
+by (cut_facts_tac [major] 1);
+by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1));
+val fsplitE = result();
+
+goal ZF.thy "!!R a b. fsplit(R,) ==> R(a,b)";
+by (REPEAT (eresolve_tac [asm_rl,fsplitE,Pair_inject,ssubst] 1));
+val fsplitD = result();
+
+val pair_cs = upair_cs
+ addSIs [SigmaI]
+ addSEs [SigmaE2, SigmaE, Pair_inject, make_elim succ_inject,
+ Pair_neq_0, sym RS Pair_neq_0, succ_neq_0, sym RS succ_neq_0];
+