diff -r 000000000000 -r a5a9c433f639 src/ZF/Trancl.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/Trancl.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,193 @@ +(* Title: ZF/trancl.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +For trancl.thy. Transitive closure of a relation +*) + +open Trancl; + +val major::prems = goalw Trancl.thy [trans_def] + "[| trans(r); :r; :r |] ==> :r"; +by (rtac (major RS spec RS spec RS spec RS mp RS mp) 1); +by (REPEAT (resolve_tac prems 1)); +val transD = result(); + +goal Trancl.thy "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))"; +by (rtac bnd_monoI 1); +by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2)); +by (fast_tac comp_cs 1); +val rtrancl_bnd_mono = result(); + +val [prem] = goalw Trancl.thy [rtrancl_def] "r<=s ==> r^* <= s^*"; +by (rtac lfp_mono 1); +by (REPEAT (resolve_tac [rtrancl_bnd_mono, prem, subset_refl, id_mono, + comp_mono, Un_mono, field_mono, Sigma_mono] 1)); +val rtrancl_mono = result(); + +(* r^* = id(field(r)) Un ( r O r^* ) *) +val rtrancl_unfold = rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_Tarski); + +(** The relation rtrancl **) + +val rtrancl_type = standard (rtrancl_def RS def_lfp_subset); + +(*Reflexivity of rtrancl*) +val [prem] = goal Trancl.thy "[| a: field(r) |] ==> : r^*"; +by (resolve_tac [rtrancl_unfold RS ssubst] 1); +by (rtac (prem RS idI RS UnI1) 1); +val rtrancl_refl = result(); + +(*Closure under composition with r *) +val prems = goal Trancl.thy + "[| : r^*; : r |] ==> : r^*"; +by (resolve_tac [rtrancl_unfold RS ssubst] 1); +by (rtac (compI RS UnI2) 1); +by (resolve_tac prems 1); +by (resolve_tac prems 1); +val rtrancl_into_rtrancl = result(); + +(*rtrancl of r contains all pairs in r *) +val prems = goal Trancl.thy " : r ==> : r^*"; +by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1); +by (REPEAT (resolve_tac (prems@[fieldI1]) 1)); +val r_into_rtrancl = result(); + +(*The premise ensures that r consists entirely of pairs*) +val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^*"; +by (cut_facts_tac prems 1); +by (fast_tac (ZF_cs addIs [r_into_rtrancl]) 1); +val r_subset_rtrancl = result(); + +goal Trancl.thy "field(r^*) = field(r)"; +by (fast_tac (eq_cs addIs [r_into_rtrancl] + addSDs [rtrancl_type RS subsetD]) 1); +val rtrancl_field = result(); + + +(** standard induction rule **) + +val major::prems = goal Trancl.thy + "[| : r^*; \ +\ !!x. x: field(r) ==> P(); \ +\ !!x y z.[| P(); : r^*; : r |] ==> P() |] \ +\ ==> P()"; +by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1); +by (fast_tac (ZF_cs addIs prems addSEs [idE,compE]) 1); +val rtrancl_full_induct = result(); + +(*nice induction rule. + Tried adding the typing hypotheses y,z:field(r), but these + caused expensive case splits!*) +val major::prems = goal Trancl.thy + "[| : r^*; \ +\ P(a); \ +\ !!y z.[| : r^*; : r; P(y) |] ==> P(z) \ +\ |] ==> P(b)"; +(*by induction on this formula*) +by (subgoal_tac "ALL y. = --> P(y)" 1); +(*now solve first subgoal: this formula is sufficient*) +by (EVERY1 [etac (spec RS mp), rtac refl]); +(*now do the induction*) +by (resolve_tac [major RS rtrancl_full_induct] 1); +by (ALLGOALS (fast_tac (ZF_cs addIs prems))); +val rtrancl_induct = result(); + +(*transitivity of transitive closure!! -- by induction.*) +goalw Trancl.thy [trans_def] "trans(r^*)"; +by (REPEAT (resolve_tac [allI,impI] 1)); +by (eres_inst_tac [("b","z")] rtrancl_induct 1); +by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1)); +val trans_rtrancl = result(); + +(*elimination of rtrancl -- by induction on a special formula*) +val major::prems = goal Trancl.thy + "[| : r^*; (a=b) ==> P; \ +\ !!y.[| : r^*; : r |] ==> P |] \ +\ ==> P"; +by (subgoal_tac "a = b | (EX y. : r^* & : r)" 1); +(*see HOL/trancl*) +by (rtac (major RS rtrancl_induct) 2); +by (ALLGOALS (fast_tac (ZF_cs addSEs prems))); +val rtranclE = result(); + + +(**** The relation trancl ****) + +(*Transitivity of r^+ is proved by transitivity of r^* *) +goalw Trancl.thy [trans_def,trancl_def] "trans(r^+)"; +by (safe_tac comp_cs); +by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1); +by (REPEAT (assume_tac 1)); +val trans_trancl = result(); + +(** Conversions between trancl and rtrancl **) + +val [major] = goalw Trancl.thy [trancl_def] " : r^+ ==> : r^*"; +by (resolve_tac [major RS compEpair] 1); +by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1)); +val trancl_into_rtrancl = result(); + +(*r^+ contains all pairs in r *) +val [prem] = goalw Trancl.thy [trancl_def] " : r ==> : r^+"; +by (REPEAT (ares_tac [prem,compI,rtrancl_refl,fieldI1] 1)); +val r_into_trancl = result(); + +(*The premise ensures that r consists entirely of pairs*) +val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^+"; +by (cut_facts_tac prems 1); +by (fast_tac (ZF_cs addIs [r_into_trancl]) 1); +val r_subset_trancl = result(); + +(*intro rule by definition: from r^* and r *) +val prems = goalw Trancl.thy [trancl_def] + "[| : r^*; : r |] ==> : r^+"; +by (REPEAT (resolve_tac ([compI]@prems) 1)); +val rtrancl_into_trancl1 = result(); + +(*intro rule from r and r^* *) +val prems = goal Trancl.thy + "[| : r; : r^* |] ==> : r^+"; +by (resolve_tac (prems RL [rtrancl_induct]) 1); +by (resolve_tac (prems RL [r_into_trancl]) 1); +by (etac (trans_trancl RS transD) 1); +by (etac r_into_trancl 1); +val rtrancl_into_trancl2 = result(); + +(*Nice induction rule for trancl*) +val major::prems = goal Trancl.thy + "[| : r^+; \ +\ !!y. [| : r |] ==> P(y); \ +\ !!y z.[| : r^+; : r; P(y) |] ==> P(z) \ +\ |] ==> P(b)"; +by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1); +(*by induction on this formula*) +by (subgoal_tac "ALL z. : r --> P(z)" 1); +(*now solve first subgoal: this formula is sufficient*) +by (fast_tac ZF_cs 1); +by (etac rtrancl_induct 1); +by (ALLGOALS (fast_tac (ZF_cs addIs (rtrancl_into_trancl1::prems)))); +val trancl_induct = result(); + +(*elimination of r^+ -- NOT an induction rule*) +val major::prems = goal Trancl.thy + "[| : r^+; \ +\ : r ==> P; \ +\ !!y.[| : r^+; : r |] ==> P \ +\ |] ==> P"; +by (subgoal_tac " : r | (EX y. : r^+ & : r)" 1); +by (fast_tac (ZF_cs addIs prems) 1); +by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1); +by (etac rtranclE 1); +by (ALLGOALS (fast_tac (ZF_cs addIs [rtrancl_into_trancl1]))); +val tranclE = result(); + +goalw Trancl.thy [trancl_def] "r^+ <= field(r)*field(r)"; +by (fast_tac (ZF_cs addEs [compE, rtrancl_type RS subsetD RS SigmaE2]) 1); +val trancl_type = result(); + +val [prem] = goalw Trancl.thy [trancl_def] "r<=s ==> r^+ <= s^+"; +by (REPEAT (resolve_tac [prem, comp_mono, rtrancl_mono] 1)); +val trancl_mono = result(); +