diff -r 000000000000 -r a5a9c433f639 src/ZF/indrule.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/indrule.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,162 @@ +(* Title: ZF/indrule.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +Induction rule module -- for Inductive/Coinductive Definitions + +Proves a strong induction rule and a mutual induction rule +*) + +signature INDRULE = + sig + val induct : thm (*main induction rule*) + val mutual_induct : thm (*mutual induction rule*) + end; + + +functor Indrule_Fun (structure Ind: INDUCTIVE and + Pr: PR and Intr_elim: INTR_ELIM) : INDRULE = +struct +open Logic Ind Intr_elim; + +val dummy = writeln "Proving the induction rules..."; + +(*** Prove the main induction rule ***) + +val pred_name = "P"; (*name for predicate variables*) + +val prove = prove_term (sign_of Intr_elim.thy); + +val big_rec_def::part_rec_defs = Intr_elim.defs; + +(*Used to make induction rules; + ind_alist = [(rec_tm1,pred1),...] -- associates predicates with rec ops + prem is a premise of an intr rule*) +fun add_induct_prem ind_alist (prem as Const("Trueprop",_) $ + (Const("op :",_)$t$X), iprems) = + (case gen_assoc (op aconv) (ind_alist, X) of + Some pred => prem :: mk_tprop (pred $ t) :: iprems + | None => (*possibly membership in M(rec_tm), for M monotone*) + let fun mk_sb (rec_tm,pred) = (rec_tm, Collect_const$rec_tm$pred) + in subst_free (map mk_sb ind_alist) prem :: iprems end) + | add_induct_prem ind_alist (prem,iprems) = prem :: iprems; + +(*Make a premise of the induction rule.*) +fun induct_prem ind_alist intr = + let val quantfrees = map dest_Free (term_frees intr \\ rec_params) + val iprems = foldr (add_induct_prem ind_alist) + (strip_imp_prems intr,[]) + val (t,X) = rule_concl intr + val (Some pred) = gen_assoc (op aconv) (ind_alist, X) + val concl = mk_tprop (pred $ t) + in list_all_free (quantfrees, list_implies (iprems,concl)) end + handle Bind => error"Recursion term not found in conclusion"; + +(*Avoids backtracking by delivering the correct premise to each goal*) +fun ind_tac [] 0 = all_tac + | ind_tac(prem::prems) i = REPEAT (ares_tac [Part_eqI,prem] i) THEN + ind_tac prems (i-1); + +val pred = Free(pred_name, iT-->oT); + +val ind_prems = map (induct_prem (map (rpair pred) rec_tms)) intr_tms; + +val quant_induct = + prove part_rec_defs + (list_implies (ind_prems, mk_tprop (mk_all_imp(big_rec_tm,pred))), + fn prems => + [rtac (impI RS allI) 1, + etac raw_induct 1, + REPEAT (FIRSTGOAL (eresolve_tac [CollectE,exE,conjE,disjE,ssubst])), + REPEAT (FIRSTGOAL (eresolve_tac [PartE,CollectE])), + ind_tac (rev prems) (length prems) ]); + +(*** Prove the simultaneous induction rule ***) + +(*Make distinct predicates for each inductive set*) + +(*Sigmas and Cartesian products may nest ONLY to the right!*) +fun mk_pred_typ (t $ A $ B) = + if t = Pr.sigma then iT --> mk_pred_typ B + else iT --> oT + | mk_pred_typ _ = iT --> oT + +(*Given a recursive set and its domain, return the "fsplit" predicate + and a conclusion for the simultaneous induction rule*) +fun mk_predpair (rec_tm,domt) = + let val rec_name = (#1 o dest_Const o head_of) rec_tm + val T = mk_pred_typ domt + val pfree = Free(pred_name ^ "_" ^ rec_name, T) + val frees = mk_frees "za" (binder_types T) + val qconcl = + foldr mk_all (frees, + imp $ (mem_const $ foldr1 (app Pr.pair) frees $ rec_tm) + $ (list_comb (pfree,frees))) + in (ap_split Pr.fsplit_const pfree (binder_types T), + qconcl) + end; + +val (preds,qconcls) = split_list (map mk_predpair (rec_tms~~domts)); + +(*Used to form simultaneous induction lemma*) +fun mk_rec_imp (rec_tm,pred) = + imp $ (mem_const $ Bound 0 $ rec_tm) $ (pred $ Bound 0); + +(*To instantiate the main induction rule*) +val induct_concl = + mk_tprop(mk_all_imp(big_rec_tm, + Abs("z", iT, + fold_bal (app conj) + (map mk_rec_imp (rec_tms~~preds))))) +and mutual_induct_concl = mk_tprop(fold_bal (app conj) qconcls); + +val lemma = (*makes the link between the two induction rules*) + prove part_rec_defs + (mk_implies (induct_concl,mutual_induct_concl), + fn prems => + [cut_facts_tac prems 1, + REPEAT (eresolve_tac [asm_rl,conjE,PartE,mp] 1 + ORELSE resolve_tac [allI,impI,conjI,Part_eqI] 1 + ORELSE dresolve_tac [spec, mp, Pr.fsplitD] 1)]); + +(*Mutual induction follows by freeness of Inl/Inr.*) + +(*Removes Collects caused by M-operators in the intro rules*) +val cmonos = [subset_refl RS Collect_mono] RL monos RLN (2,[rev_subsetD]); + +(*Avoids backtracking by delivering the correct premise to each goal*) +fun mutual_ind_tac [] 0 = all_tac + | mutual_ind_tac(prem::prems) i = + SELECT_GOAL + ((*unpackage and use "prem" in the corresponding place*) + REPEAT (FIRSTGOAL + (eresolve_tac ([conjE,mp]@cmonos) ORELSE' + ares_tac [prem,impI,conjI])) + (*prove remaining goals by contradiction*) + THEN rewrite_goals_tac (con_defs@part_rec_defs) + THEN REPEAT (eresolve_tac (PartE :: sumprod_free_SEs) 1)) + i THEN mutual_ind_tac prems (i-1); + +val mutual_induct_fsplit = + prove [] + (list_implies (map (induct_prem (rec_tms~~preds)) intr_tms, + mutual_induct_concl), + fn prems => + [rtac (quant_induct RS lemma) 1, + mutual_ind_tac (rev prems) (length prems)]); + +(*Attempts to remove all occurrences of fsplit*) +val fsplit_tac = + REPEAT (SOMEGOAL (FIRST' [rtac Pr.fsplitI, + dtac Pr.fsplitD, + etac Pr.fsplitE, + bound_hyp_subst_tac])) + THEN prune_params_tac; + +(*strip quantifier*) +val induct = standard (quant_induct RS spec RSN (2,rev_mp)); + +val mutual_induct = rule_by_tactic fsplit_tac mutual_induct_fsplit; + +end;