diff -r 000000000000 -r a5a9c433f639 src/ZF/nat.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/nat.ML Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,182 @@ +(* Title: ZF/nat.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +For nat.thy. Natural numbers in Zermelo-Fraenkel Set Theory +*) + +open Nat; + +goal Nat.thy "bnd_mono(Inf, %X. {0} Un {succ(i). i:X})"; +by (rtac bnd_monoI 1); +by (REPEAT (ares_tac [subset_refl, RepFun_mono, Un_mono] 2)); +by (cut_facts_tac [infinity] 1); +by (fast_tac ZF_cs 1); +val nat_bnd_mono = result(); + +(* nat = {0} Un {succ(x). x:nat} *) +val nat_unfold = nat_bnd_mono RS (nat_def RS def_lfp_Tarski); + +(** Type checking of 0 and successor **) + +goal Nat.thy "0 : nat"; +by (rtac (nat_unfold RS ssubst) 1); +by (rtac (singletonI RS UnI1) 1); +val nat_0I = result(); + +val prems = goal Nat.thy "n : nat ==> succ(n) : nat"; +by (rtac (nat_unfold RS ssubst) 1); +by (rtac (RepFunI RS UnI2) 1); +by (resolve_tac prems 1); +val nat_succI = result(); + +goalw Nat.thy [one_def] "1 : nat"; +by (rtac (nat_0I RS nat_succI) 1); +val nat_1I = result(); + +goal Nat.thy "bool <= nat"; +by (REPEAT (ares_tac [subsetI,nat_0I,nat_1I] 1 ORELSE etac boolE 1)); +val bool_subset_nat = result(); + +val bool_into_nat = bool_subset_nat RS subsetD; + + +(** Injectivity properties and induction **) + +(*Mathematical induction*) +val major::prems = goal Nat.thy + "[| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x)) |] ==> P(n)"; +by (rtac ([nat_def, nat_bnd_mono, major] MRS def_induct) 1); +by (fast_tac (ZF_cs addIs prems) 1); +val nat_induct = result(); + +(*Perform induction on n, then prove the n:nat subgoal using prems. *) +fun nat_ind_tac a prems i = + EVERY [res_inst_tac [("n",a)] nat_induct i, + rename_last_tac a ["1"] (i+2), + ares_tac prems i]; + +val major::prems = goal Nat.thy + "[| n: nat; n=0 ==> P; !!x. [| x: nat; n=succ(x) |] ==> P |] ==> P"; +br (major RS (nat_unfold RS equalityD1 RS subsetD) RS UnE) 1; +by (DEPTH_SOLVE (eresolve_tac [singletonE,RepFunE] 1 + ORELSE ares_tac prems 1)); +val natE = result(); + +val prems = goal Nat.thy "n: nat ==> Ord(n)"; +by (nat_ind_tac "n" prems 1); +by (REPEAT (ares_tac [Ord_0, Ord_succ] 1)); +val naturals_are_ordinals = result(); + +goal Nat.thy "!!n. n: nat ==> n=0 | 0:n"; +by (etac nat_induct 1); +by (fast_tac ZF_cs 1); +by (fast_tac (ZF_cs addIs [naturals_are_ordinals RS Ord_0_mem_succ]) 1); +val natE0 = result(); + +goal Nat.thy "Ord(nat)"; +by (rtac OrdI 1); +by (etac (naturals_are_ordinals RS Ord_is_Transset) 2); +by (rewtac Transset_def); +by (rtac ballI 1); +by (etac nat_induct 1); +by (REPEAT (ares_tac [empty_subsetI,succ_subsetI] 1)); +val Ord_nat = result(); + +(** Variations on mathematical induction **) + +(*complete induction*) +val complete_induct = Ord_nat RSN (2, Ord_induct); + +val prems = goal Nat.thy + "[| m: nat; n: nat; \ +\ !!x. [| x: nat; m<=x; P(x) |] ==> P(succ(x)) \ +\ |] ==> m <= n --> P(m) --> P(n)"; +by (nat_ind_tac "n" prems 1); +by (ALLGOALS + (ASM_SIMP_TAC + (ZF_ss addrews (prems@distrib_rews@[subset_empty_iff, subset_succ_iff, + Ord_nat RS Ord_in_Ord])))); +val nat_induct_from_lemma = result(); + +(*Induction starting from m rather than 0*) +val prems = goal Nat.thy + "[| m <= n; m: nat; n: nat; \ +\ P(m); \ +\ !!x. [| x: nat; m<=x; P(x) |] ==> P(succ(x)) \ +\ |] ==> P(n)"; +by (rtac (nat_induct_from_lemma RS mp RS mp) 1); +by (REPEAT (ares_tac prems 1)); +val nat_induct_from = result(); + +(*Induction suitable for subtraction and less-than*) +val prems = goal Nat.thy + "[| m: nat; n: nat; \ +\ !!x. [| x: nat |] ==> P(x,0); \ +\ !!y. [| y: nat |] ==> P(0,succ(y)); \ +\ !!x y. [| x: nat; y: nat; P(x,y) |] ==> P(succ(x),succ(y)) \ +\ |] ==> P(m,n)"; +by (res_inst_tac [("x","m")] bspec 1); +by (resolve_tac prems 2); +by (nat_ind_tac "n" prems 1); +by (rtac ballI 2); +by (nat_ind_tac "x" [] 2); +by (REPEAT (ares_tac (prems@[ballI]) 1 ORELSE etac bspec 1)); +val diff_induct = result(); + +(** nat_case **) + +goalw Nat.thy [nat_case_def] "nat_case(0,a,b) = a"; +by (fast_tac (ZF_cs addIs [the_equality]) 1); +val nat_case_0 = result(); + +goalw Nat.thy [nat_case_def] "nat_case(succ(m),a,b) = b(m)"; +by (fast_tac (ZF_cs addIs [the_equality]) 1); +val nat_case_succ = result(); + +val major::prems = goal Nat.thy + "[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) \ +\ |] ==> nat_case(n,a,b) : C(n)"; +by (rtac (major RS nat_induct) 1); +by (REPEAT (resolve_tac [nat_case_0 RS ssubst, + nat_case_succ RS ssubst] 1 + THEN resolve_tac prems 1)); +by (assume_tac 1); +val nat_case_type = result(); + +val prems = goalw Nat.thy [nat_case_def] + "[| n=n'; a=a'; !!m z. b(m)=b'(m) \ +\ |] ==> nat_case(n,a,b)=nat_case(n',a',b')"; +by (REPEAT (resolve_tac [the_cong,disj_cong,ex_cong] 1 + ORELSE EVERY1 (map rtac ((prems RL [ssubst]) @ [iff_refl])))); +val nat_case_cong = result(); + + +(** nat_rec -- used to define eclose and transrec, then obsolete **) + +val nat_rec_trans = wf_Memrel RS (nat_rec_def RS def_wfrec RS trans); + +goal Nat.thy "nat_rec(0,a,b) = a"; +by (rtac nat_rec_trans 1); +by (rtac nat_case_0 1); +val nat_rec_0 = result(); + +val [prem] = goal Nat.thy + "m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"; +val nat_rec_ss = ZF_ss + addcongs (mk_typed_congs Nat.thy [("b", "[i,i]=>i")]) + addrews [prem, nat_case_succ, nat_succI, Memrel_iff, + vimage_singleton_iff]; +by (rtac nat_rec_trans 1); +by (SIMP_TAC nat_rec_ss 1); +val nat_rec_succ = result(); + +(** The union of two natural numbers is a natural number -- their maximum **) + +(* [| ?i : nat; ?j : nat |] ==> ?i Un ?j : nat *) +val Un_nat_type = standard (Ord_nat RSN (3,Ord_member_UnI)); + +(* [| ?i : nat; ?j : nat |] ==> ?i Int ?j : nat *) +val Int_nat_type = standard (Ord_nat RSN (3,Ord_member_IntI)); +