diff -r 000000000000 -r a5a9c433f639 src/ZF/perm.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/perm.thy Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,36 @@ +(* Title: ZF/perm + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +The theory underlying permutation groups + -- Composition of relations, the identity relation + -- Injections, surjections, bijections + -- Lemmas for the Schroeder-Bernstein Theorem +*) + +Perm = ZF + +consts + O :: "[i,i]=>i" (infixr 60) + id :: "i=>i" + inj,surj,bij:: "[i,i]=>i" + +rules + + (*composition of relations and functions; NOT Suppes's relative product*) + comp_def "r O s == {xz : domain(s)*range(r) . \ +\ EX x y z. xz= & :s & :r}" + + (*the identity function for A*) + id_def "id(A) == (lam x:A. x)" + + (*one-to-one functions from A to B*) + inj_def "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}" + + (*onto functions from A to B*) + surj_def "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}" + + (*one-to-one and onto functions*) + bij_def "bij(A,B) == inj(A,B) Int surj(A,B)" + +end