diff -r 000000000000 -r a5a9c433f639 src/ZF/qpair.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/qpair.thy Thu Sep 16 12:20:38 1993 +0200 @@ -0,0 +1,52 @@ +(* Title: ZF/qpair.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +Quine-inspired ordered pairs and disjoint sums, for non-well-founded data +structures in ZF. Does not precisely follow Quine's construction. Thanks +to Thomas Forster for suggesting this approach! + +W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers, +1966. +*) + +QPair = Sum + +consts + QPair :: "[i, i] => i" ("<(_;/ _)>") + qsplit :: "[[i,i] => i, i] => i" + qfsplit :: "[[i,i] => o, i] => o" + qconverse :: "i => i" + "@QSUM" :: "[idt, i, i] => i" ("(3QSUM _:_./ _)" 10) + " <*>" :: "[i, i] => i" ("(_ <*>/ _)" [81, 80] 80) + QSigma :: "[i, i => i] => i" + + "<+>" :: "[i,i]=>i" (infixr 65) + QInl,QInr :: "i=>i" + qcase :: "[i=>i, i=>i, i]=>i" + +translations + "QSUM x:A. B" => "QSigma(A, %x. B)" + +rules + QPair_def " == a+b" + qsplit_def "qsplit(c,p) == THE y. EX a b. p= & y=c(a,b)" + qfsplit_def "qfsplit(R,z) == EX x y. z= & R(x,y)" + qconverse_def "qconverse(r) == {z. w:r, EX x y. w= & z=}" + QSigma_def "QSigma(A,B) == UN x:A. UN y:B(x). {}" + + qsum_def "A <+> B == QSigma({0}, %x.A) Un QSigma({1}, %x.B)" + QInl_def "QInl(a) == <0;a>" + QInr_def "QInr(b) == <1;b>" + qcase_def "qcase(c,d) == qsplit(%y z. cond(y, d(z), c(z)))" +end + +ML + +(* 'Dependent' type operators *) + +val parse_translation = + [(" <*>", ndependent_tr "QSigma")]; + +val print_translation = + [("QSigma", dependent_tr' ("@QSUM", " <*>"))];