diff -r 6dcb8aa0966a -r 00c06f1315d0 src/HOL/Multivariate_Analysis/Linear_Algebra.thy --- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Mon May 25 22:52:17 2015 +0200 +++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue May 26 21:58:04 2015 +0100 @@ -29,12 +29,7 @@ fixes e :: real shows "e > 0 \ \d. 0 < d \ (\y. \y - x\ < d \ \y * y - x * x\ < e)" using isCont_power[OF continuous_ident, of x, unfolded isCont_def LIM_eq, rule_format, of e 2] - apply (auto simp add: power2_eq_square) - apply (rule_tac x="s" in exI) - apply auto - apply (erule_tac x=y in allE) - apply auto - done + by (force simp add: power2_eq_square) text{* Hence derive more interesting properties of the norm. *} @@ -1594,6 +1589,12 @@ shows "independent S \ finite S \ card S \ DIM('a)" using independent_span_bound[OF finite_Basis, of S] by auto +corollary + fixes S :: "'a::euclidean_space set" + assumes "independent S" + shows independent_imp_finite: "finite S" and independent_card_le:"card S \ DIM('a)" +using assms independent_bound by auto + lemma dependent_biggerset: fixes S :: "'a::euclidean_space set" shows "(finite S \ card S > DIM('a)) \ dependent S" @@ -1785,7 +1786,7 @@ shows "(finite S \ card S > dim S) \ dependent S" using independent_bound_general[of S] by (metis linorder_not_le) -lemma dim_span: +lemma dim_span [simp]: fixes S :: "'a::euclidean_space set" shows "dim (span S) = dim S" proof -