diff -r 9e71155e3666 -r 0135a0c77b64 src/HOL/Probability/Probability_Measure.thy --- a/src/HOL/Probability/Probability_Measure.thy Fri Sep 24 13:40:14 2021 +0200 +++ b/src/HOL/Probability/Probability_Measure.thy Fri Sep 24 22:23:26 2021 +0200 @@ -220,7 +220,8 @@ using \I \ {}\ by auto next fix k assume "k \ (\x. q x + ?F x * (expectation X - x)) ` I" - then guess x .. note x = this + then obtain x + where x: "k = q x + (INF t\{x<..} \ I. (q x - q t) / (x - t)) * (expectation X - x)" "x \ I" .. have "q x + ?F x * (expectation X - x) = expectation (\w. q x + ?F x * (X w - x))" using prob_space by (simp add: X) also have "\ \ expectation (\w. q (X w))" @@ -320,7 +321,8 @@ assumes ae: "AE x in M. P x" obtains S where "S \ {x \ space M. P x}" "S \ events" "prob S = 1" proof - - from ae[THEN AE_E] guess N . + from ae[THEN AE_E] obtain N + where "{x \ space M. \ P x} \ N" "emeasure M N = 0" "N \ events" by auto then show thesis by (intro that[of "space M - N"]) (auto simp: prob_compl prob_space emeasure_eq_measure measure_nonneg) @@ -365,7 +367,12 @@ assumes ae: "AE x in M. (\n. P n x \ Q x) \ (Q x \ (\!n. P n x))" shows "(\n. \

(x in M. P n x)) sums \

(x in M. Q x)" proof - - from ae[THEN AE_E_prob] guess S . note S = this + from ae[THEN AE_E_prob] obtain S + where S: + "S \ {x \ space M. (\n. P n x \ Q x) \ (Q x \ (\!n. P n x))}" + "S \ events" + "prob S = 1" + by auto then have disj: "disjoint_family (\n. {x\space M. P n x} \ S)" by (auto simp: disjoint_family_on_def) from S have ae_S: @@ -390,7 +397,12 @@ assumes ae: "AE x in M. (\n\I. P n x \ Q x) \ (Q x \ (\!n\I. P n x))" shows "\

(x in M. Q x) = (\n\I. \

(x in M. P n x))" proof - - from ae[THEN AE_E_prob] guess S . note S = this + from ae[THEN AE_E_prob] obtain S + where S: + "S \ {x \ space M. (\n\I. P n x \ Q x) \ (Q x \ (\!n. n \ I \ P n x))}" + "S \ events" + "prob S = 1" + by auto then have disj: "disjoint_family_on (\n. {x\space M. P n x} \ S) I" by (auto simp: disjoint_family_on_def) from S have ae_S: @@ -692,7 +704,10 @@ interpret T: sigma_finite_measure T by fact interpret ST: pair_sigma_finite S T .. - from ST.sigma_finite_up_in_pair_measure_generator guess F :: "nat \ ('b \ 'c) set" .. note F = this + from ST.sigma_finite_up_in_pair_measure_generator + obtain F :: "nat \ ('b \ 'c) set" + where F: "range F \ {A \ B |A B. A \ sets S \ B \ sets T} \ incseq F \ + \ (range F) = space S \ space T \ (\i. emeasure (S \\<^sub>M T) (F i) \ \)" .. let ?E = "{a \ b |a b. a \ sets S \ b \ sets T}" let ?P = "S \\<^sub>M T" show "distr M ?P (\x. (X x, Y x)) = density ?P f" (is "?L = ?R")