diff -r 33dbbcb6a8a3 -r 01488b559910 src/HOL/Number_Theory/Cong.thy --- a/src/HOL/Number_Theory/Cong.thy Wed Jul 08 14:01:40 2015 +0200 +++ b/src/HOL/Number_Theory/Cong.thy Wed Jul 08 14:01:41 2015 +0200 @@ -267,7 +267,7 @@ lemma cong_mult_rcancel_int: "coprime k (m::int) \ [a * k = b * k] (mod m) = [a = b] (mod m)" - by (metis cong_altdef_int left_diff_distrib coprime_dvd_mult_iff_int gcd_int.commute) + by (metis cong_altdef_int left_diff_distrib coprime_dvd_mult_iff_int gcd.commute) lemma cong_mult_rcancel_nat: "coprime k (m::nat) \ [a * k = b * k] (mod m) = [a = b] (mod m)" @@ -528,15 +528,15 @@ done lemma coprime_iff_invertible_nat: "m > 0 \ coprime a m = (EX x. [a * x = Suc 0] (mod m))" - apply (auto intro: cong_solve_coprime_nat simp: One_nat_def) + apply (auto intro: cong_solve_coprime_nat) apply (metis cong_Suc_0_nat cong_solve_nat gcd_nat.left_neutral) apply (metis One_nat_def cong_gcd_eq_nat coprime_lmult_nat - gcd_lcm_complete_lattice_nat.inf_bot_right gcd_nat.commute) + gcd_lcm_complete_lattice_nat.inf_bot_right gcd.commute) done lemma coprime_iff_invertible_int: "m > (0::int) \ coprime a m = (EX x. [a * x = 1] (mod m))" apply (auto intro: cong_solve_coprime_int) - apply (metis cong_int_def coprime_mul_eq_int gcd_1_int gcd_int.commute gcd_red_int) + apply (metis cong_int_def coprime_mul_eq_int gcd_1_int gcd.commute gcd_red_int) done lemma coprime_iff_invertible'_nat: "m > 0 \ coprime a m = @@ -571,7 +571,7 @@ [x = y] (mod (PROD i:A. m i))" apply (induct set: finite) apply auto - apply (metis One_nat_def coprime_cong_mult_nat gcd_nat.commute setprod_coprime_nat) + apply (metis One_nat_def coprime_cong_mult_nat gcd.commute setprod_coprime_nat) done lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \ @@ -580,7 +580,7 @@ [x = y] (mod (PROD i:A. m i))" apply (induct set: finite) apply auto - apply (metis coprime_cong_mult_int gcd_int.commute setprod_coprime_int) + apply (metis coprime_cong_mult_int gcd.commute setprod_coprime_int) done lemma binary_chinese_remainder_aux_nat: @@ -827,7 +827,7 @@ [x = y] (mod (PROD i:A. m i))" apply (induct set: finite) apply auto - apply (metis One_nat_def coprime_cong_mult_nat gcd_nat.commute setprod_coprime_nat) + apply (metis One_nat_def coprime_cong_mult_nat gcd.commute setprod_coprime_nat) done lemma chinese_remainder_unique_nat: