diff -r fb579401dc26 -r 019d642d422d src/HOL/Fact.thy --- a/src/HOL/Fact.thy Mon Nov 26 21:46:04 2012 +0100 +++ b/src/HOL/Fact.thy Tue Nov 27 10:56:31 2012 +0100 @@ -315,4 +315,13 @@ by (auto simp: image_iff) qed (auto intro: inj_onI) +lemma fact_div_fact_le_pow: + assumes "r \ n" shows "fact n div fact (n - r) \ n ^ r" +proof - + have "\r. r \ n \ \{n - r..n} = (n - r) * \{Suc (n - r)..n}" + by (subst setprod_insert[symmetric]) (auto simp: atLeastAtMost_insertL) + with assms show ?thesis + by (induct r rule: nat.induct) (auto simp add: fact_div_fact Suc_diff_Suc mult_le_mono) +qed + end