diff -r aefb4a8da31f -r 01caba82e1d2 src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Fri Apr 11 13:36:57 2014 +0200 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Fri Apr 11 17:11:41 2014 +0200 @@ -1114,7 +1114,7 @@ proof (rule SUP_simple_integral_sequences[OF l(3,6,2)]) show "incseq ?L'" "\i x. 0 \ ?L' i x" "\i. simple_function M (?L' i)" using u v `0 \ a` unfolding incseq_Suc_iff le_fun_def - by (auto intro!: add_mono ereal_mult_left_mono ereal_add_nonneg_nonneg) + by (auto intro!: add_mono ereal_mult_left_mono) { fix x { fix i have "a * u i x \ -\" "v i x \ -\" "u i x \ -\" using `0 \ a` u(6)[of i x] v(6)[of i x] by auto } @@ -1122,10 +1122,10 @@ using `0 \ a` u(3) v(3) u(6)[of _ x] v(6)[of _ x] by (subst SUP_ereal_cmult [symmetric, OF u(6) `0 \ a`]) (auto intro!: SUP_ereal_add - simp: incseq_Suc_iff le_fun_def add_mono ereal_mult_left_mono ereal_add_nonneg_nonneg) } + simp: incseq_Suc_iff le_fun_def add_mono ereal_mult_left_mono) } then show "AE x in M. (SUP i. l i x) = (SUP i. ?L' i x)" unfolding l(5) using `0 \ a` u(5) v(5) l(5) f(2) g(2) - by (intro AE_I2) (auto split: split_max simp add: ereal_add_nonneg_nonneg) + by (intro AE_I2) (auto split: split_max) qed also have "\ = (SUP i. a * integral\<^sup>S M (u i) + integral\<^sup>S M (v i))" using u(2, 6) v(2, 6) `0 \ a` by (auto intro!: arg_cong[where f="SUPREMUM UNIV"] ext) @@ -1182,7 +1182,7 @@ shows "(\\<^sup>+ x. f x + g x \M) = integral\<^sup>P M f + integral\<^sup>P M g" proof - have ae: "AE x in M. max 0 (f x) + max 0 (g x) = max 0 (f x + g x)" - using assms by (auto split: split_max simp: ereal_add_nonneg_nonneg) + using assms by (auto split: split_max) have "(\\<^sup>+ x. f x + g x \M) = (\\<^sup>+ x. max 0 (f x + g x) \M)" by (simp add: positive_integral_max_0) also have "\ = (\\<^sup>+ x. max 0 (f x) + max 0 (g x) \M)"