diff -r dd7992d4a61a -r 01fbfb60c33e src/HOL/Library/Polynomial.thy --- a/src/HOL/Library/Polynomial.thy Wed Feb 12 08:35:57 2014 +0100 +++ b/src/HOL/Library/Polynomial.thy Wed Feb 12 08:37:06 2014 +0100 @@ -406,7 +406,7 @@ { fix ms :: "nat list" and f :: "nat \ 'a" and x :: "'a" assume "\m\set ms. m > 0" then have "map (case_nat x f) ms = map f (map (\n. n - 1) ms)" - by (induct ms) (auto, metis Suc_pred' case_nat_Suc) } + by (induct ms) (auto, metis Suc_pred' nat.cases(2)) } note * = this show ?thesis by (simp add: coeffs_def * upt_conv_Cons coeff_pCons map_decr_upt One_nat_def del: upt_Suc) @@ -452,7 +452,7 @@ lemma coeff_Poly_eq: "coeff (Poly xs) n = nth_default 0 xs n" apply (induct xs arbitrary: n) apply simp_all - by (metis case_nat_0 case_nat_Suc not0_implies_Suc nth_default_Cons_0 nth_default_Cons_Suc pCons.rep_eq) + by (metis nat.cases not0_implies_Suc nth_default_Cons_0 nth_default_Cons_Suc pCons.rep_eq) lemma nth_default_coeffs_eq: "nth_default 0 (coeffs p) = coeff p"