diff -r 1a5d4586b6b0 -r 0263787a06b4 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Sat Dec 04 17:23:42 2021 +0100 +++ b/src/HOL/Deriv.thy Sat Dec 04 20:30:16 2021 +0000 @@ -1611,7 +1611,7 @@ and derf: "\x. \a < x; x < b\ \ (f has_derivative f' x) (at x)" obtains \ where "a < \" "\ < b" "f b - f a = (f' \) (b - a)" proof - - have "\x. a < x \ x < b \ (\y. f' x y - (f b - f a) / (b - a) * y) = (\v. 0)" + have "\\. a < \ \ \ < b \ (\y. f' \ y - (f b - f a) / (b - a) * y) = (\v. 0)" proof (intro Rolle_deriv[OF \a < b\]) fix x assume x: "a < x" "x < b" @@ -1619,12 +1619,8 @@ has_derivative (\y. f' x y - (f b - f a) / (b - a) * y)) (at x)" by (intro derivative_intros derf[OF x]) qed (use assms in \auto intro!: continuous_intros simp: field_simps\) - then obtain \ where - "a < \" "\ < b" "(\y. f' \ y - (f b - f a) / (b - a) * y) = (\v. 0)" - by metis then show ?thesis - by (metis (no_types, opaque_lifting) that add.right_neutral add_diff_cancel_left' add_diff_eq \a < b\ - less_irrefl nonzero_eq_divide_eq) + by (smt (verit, ccfv_SIG) pos_le_divide_eq pos_less_divide_eq that) qed theorem MVT: