diff -r e0428c2778f1 -r 028f54cd2cc9 doc-src/TutorialI/CTL/document/CTL.tex --- a/doc-src/TutorialI/CTL/document/CTL.tex Wed Oct 18 12:30:59 2000 +0200 +++ b/doc-src/TutorialI/CTL/document/CTL.tex Wed Oct 18 17:19:18 2000 +0200 @@ -44,7 +44,7 @@ \begin{isamarkuptext}% \noindent Because \isa{af} is monotone in its second argument (and also its first, but -that is irrelevant) \isa{af\ A} has a least fixpoint:% +that is irrelevant) \isa{af\ A} has a least fixed point:% \end{isamarkuptext}% \isacommand{lemma}\ mono{\isacharunderscore}af{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}\isanewline \isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}\ mono{\isacharunderscore}def\ af{\isacharunderscore}def{\isacharparenright}\isanewline @@ -60,7 +60,7 @@ \begin{isamarkuptxt}% \noindent In contrast to the analogous property for \isa{EF}, and just -for a change, we do not use fixpoint induction but a weaker theorem, +for a change, we do not use fixed point induction but a weaker theorem, \isa{lfp{\isacharunderscore}lowerbound}: \begin{isabelle}% \ \ \ \ \ f\ S\ {\isasymsubseteq}\ S\ {\isasymLongrightarrow}\ lfp\ f\ {\isasymsubseteq}\ S% @@ -310,7 +310,7 @@ set operations are easily implemented. Only \isa{lfp} requires a little thought. Fortunately the HOL library proves that in the case of finite sets and a monotone \isa{F}, \isa{lfp\ F} can be computed by iterated application of \isa{F} to \isa{{\isacharbraceleft}{\isacharbraceright}} until -a fixpoint is reached. It is actually possible to generate executable functional programs +a fixed point is reached. It is actually possible to generate executable functional programs from HOL definitions, but that is beyond the scope of the tutorial.% \end{isamarkuptext}% \end{isabellebody}%