diff -r d2e6a1342c90 -r 02b18f59f903 src/HOL/Library/Code_Binary_Nat.thy --- a/src/HOL/Library/Code_Binary_Nat.thy Sun Aug 21 06:18:23 2022 +0000 +++ b/src/HOL/Library/Code_Binary_Nat.thy Sun Aug 21 06:18:23 2022 +0000 @@ -127,13 +127,13 @@ "nat_of_num k < nat_of_num l \ k < l" by (simp_all add: nat_of_num_numeral) -declare [[code drop: Divides.divmod_nat]] +declare [[code drop: Euclidean_Division.divmod_nat]] lemma divmod_nat_code [code]: - "Divides.divmod_nat (nat_of_num k) (nat_of_num l) = divmod k l" - "Divides.divmod_nat m 0 = (0, m)" - "Divides.divmod_nat 0 n = (0, 0)" - by (simp_all add: prod_eq_iff nat_of_num_numeral) + "Euclidean_Division.divmod_nat (nat_of_num k) (nat_of_num l) = divmod k l" + "Euclidean_Division.divmod_nat m 0 = (0, m)" + "Euclidean_Division.divmod_nat 0 n = (0, 0)" + by (simp_all add: Euclidean_Division.divmod_nat_def nat_of_num_numeral) end