diff -r e4f40a0ea2e1 -r 02fbd0e7954a src/HOL/Library/GCD.thy --- a/src/HOL/Library/GCD.thy Mon Mar 17 18:37:04 2008 +0100 +++ b/src/HOL/Library/GCD.thy Mon Mar 17 18:37:05 2008 +0100 @@ -224,11 +224,11 @@ definition lcm :: "nat \ nat \ nat" where - "lcm = (\(m, n). m * n div gcd (m, n))" + lcm_prim_def: "lcm = (\(m, n). m * n div gcd (m, n))" lemma lcm_def: "lcm (m, n) = m * n div gcd (m, n)" - unfolding lcm_def by simp + unfolding lcm_prim_def by simp lemma prod_gcd_lcm: "m * n = gcd (m, n) * lcm (m, n)"