diff -r 910d3ea1efa8 -r 0300d5170622 src/HOLCF/Algebraic.thy --- a/src/HOLCF/Algebraic.thy Thu Oct 07 13:22:13 2010 -0700 +++ b/src/HOLCF/Algebraic.thy Thu Oct 07 13:33:06 2010 -0700 @@ -99,23 +99,10 @@ using type_definition_sfp below_sfp_def by (rule below.typedef_ideal_cpo) -lemma Rep_sfp_lub: - "chain Y \ Rep_sfp (\i. Y i) = (\i. Rep_sfp (Y i))" -using type_definition_sfp below_sfp_def -by (rule below.typedef_ideal_rep_contlub) - -lemma ideal_Rep_sfp: "below.ideal (Rep_sfp xs)" -by (rule Rep_sfp [unfolded mem_Collect_eq]) - definition sfp_principal :: "fin_defl \ sfp" where "sfp_principal t = Abs_sfp {u. u \ t}" -lemma Rep_sfp_principal: - "Rep_sfp (sfp_principal t) = {u. u \ t}" -unfolding sfp_principal_def -by (simp add: Abs_sfp_inverse below.ideal_principal) - lemma fin_defl_countable: "\f::fin_defl \ nat. inj f" proof have *: "\d. finite (approx_chain.place udom_approx ` @@ -144,13 +131,9 @@ qed interpretation sfp: ideal_completion below sfp_principal Rep_sfp -apply default -apply (rule ideal_Rep_sfp) -apply (erule Rep_sfp_lub) -apply (rule Rep_sfp_principal) -apply (simp only: below_sfp_def) -apply (rule fin_defl_countable) -done +using type_definition_sfp below_sfp_def +using sfp_principal_def fin_defl_countable +by (rule below.typedef_ideal_completion) text {* Algebraic deflations are pointed *}