diff -r 9bb2856cc845 -r 0556204bc230 src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Thu Apr 03 17:16:02 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Thu Apr 03 17:56:08 2014 +0200 @@ -15,7 +15,7 @@ shows "((op * c) has_derivative (op * c)) F" by (rule has_derivative_mult_right [OF has_derivative_id]) -lemma has_derivative_of_real[has_derivative_intros, simp]: +lemma has_derivative_of_real[derivative_intros, simp]: "(f has_derivative f') F \ ((\x. of_real (f x)) has_derivative (\x. of_real (f' x))) F" using bounded_linear.has_derivative[OF bounded_linear_of_real] . @@ -200,14 +200,6 @@ shows "DERIV g a :> f'" by (blast intro: assms DERIV_transform_within) -subsection{*Further useful properties of complex conjugation*} - -lemma continuous_within_cnj: "continuous (at z within s) cnj" -by (metis bounded_linear_cnj linear_continuous_within) - -lemma continuous_on_cnj: "continuous_on s cnj" -by (metis bounded_linear_cnj linear_continuous_on) - subsection {*Some limit theorems about real part of real series etc.*} (*MOVE? But not to Finite_Cartesian_Product*) @@ -521,29 +513,29 @@ "\f complex_differentiable at z; g complex_differentiable at z\ \ deriv (\w. f w + g w) z = deriv f z + deriv g z" unfolding DERIV_deriv_iff_complex_differentiable[symmetric] - by (auto intro!: DERIV_imp_deriv DERIV_intros) + by (auto intro!: DERIV_imp_deriv derivative_intros) lemma complex_derivative_diff: "\f complex_differentiable at z; g complex_differentiable at z\ \ deriv (\w. f w - g w) z = deriv f z - deriv g z" unfolding DERIV_deriv_iff_complex_differentiable[symmetric] - by (auto intro!: DERIV_imp_deriv DERIV_intros) + by (auto intro!: DERIV_imp_deriv derivative_intros) lemma complex_derivative_mult: "\f complex_differentiable at z; g complex_differentiable at z\ \ deriv (\w. f w * g w) z = f z * deriv g z + deriv f z * g z" unfolding DERIV_deriv_iff_complex_differentiable[symmetric] - by (auto intro!: DERIV_imp_deriv DERIV_intros) + by (auto intro!: DERIV_imp_deriv derivative_eq_intros) lemma complex_derivative_cmult: "f complex_differentiable at z \ deriv (\w. c * f w) z = c * deriv f z" unfolding DERIV_deriv_iff_complex_differentiable[symmetric] - by (auto intro!: DERIV_imp_deriv DERIV_intros) + by (auto intro!: DERIV_imp_deriv derivative_eq_intros) lemma complex_derivative_cmult_right: "f complex_differentiable at z \ deriv (\w. f w * c) z = deriv f z * c" unfolding DERIV_deriv_iff_complex_differentiable[symmetric] - by (auto intro!: DERIV_imp_deriv DERIV_intros) + by (auto intro!: DERIV_imp_deriv derivative_eq_intros) lemma complex_derivative_transform_within_open: "\f holomorphic_on s; g holomorphic_on s; open s; z \ s; \w. w \ s \ f w = g w\ @@ -1037,7 +1029,7 @@ then have "((\v. (\i\n. f i v * (z - v)^i / of_nat (fact i))) has_field_derivative f (Suc n) u * (z-u) ^ n / of_nat (fact n)) (at u within s)" - apply (intro DERIV_intros DERIV_power[THEN DERIV_cong]) + apply (intro derivative_eq_intros) apply (blast intro: assms `u \ s`) apply (rule refl)+ apply (auto simp: field_simps) @@ -1083,7 +1075,7 @@ proof - have twz: "\t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)" by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib) - note assms[unfolded has_field_derivative_def, has_derivative_intros] + note assms[unfolded has_field_derivative_def, derivative_intros] show ?thesis apply (cut_tac mvt_simple [of 0 1 "Re o f o (\t. (1 - t) *\<^sub>R w + t *\<^sub>R z)" @@ -1091,7 +1083,7 @@ apply auto apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI) apply (auto simp add: open_segment_def twz) [] - apply (intro has_derivative_eq_intros has_derivative_at_within) + apply (intro derivative_eq_intros has_derivative_at_within) apply simp_all apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib) apply (force simp add: twz closed_segment_def) @@ -1136,7 +1128,7 @@ f (Suc n) u * (z - u) ^ n / of_nat (fact n)" . then have "((\u. \i = 0..n. f i u * (z - u) ^ i / of_nat (fact i)) has_field_derivative f (Suc n) u * (z - u) ^ n / of_nat (fact n)) (at u)" - apply (intro DERIV_intros)+ + apply (intro derivative_eq_intros)+ apply (force intro: u assms) apply (rule refl)+ apply (auto simp: mult_ac)