diff -r 722937a213ef -r 05a753360b25 src/HOL/Boolean_Algebras.thy --- a/src/HOL/Boolean_Algebras.thy Wed Nov 29 21:29:00 2023 +0100 +++ b/src/HOL/Boolean_Algebras.thy Thu Nov 30 16:56:44 2023 +0100 @@ -549,9 +549,12 @@ using inf_shunt [of \- x\ \- y\, symmetric] by (simp flip: compl_sup compl_top_eq) -lemma diff_shunt_var: "(x - y = \) \ (x \ y)" +lemma diff_shunt_var[simp]: "(x - y = \) \ (x \ y)" by (simp add: diff_eq inf_shunt) +lemma diff_shunt[simp]: "(\ = x - y) \ (x \ y)" + by (auto simp flip: diff_shunt_var) + lemma sup_neg_inf: \p \ q \ r \ p \ -q \ r\ (is \?P \ ?Q\) proof